task.py 60.6 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

lintangsutawika's avatar
lintangsutawika committed
54
55
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
56
57
58
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
lintangsutawika's avatar
lintangsutawika committed
59
60
61
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
62
    metric_alias: Optional[str] = None
63
    version: Optional[str] = 0
lintangsutawika's avatar
lintangsutawika committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
107
108
109
110
111
112
113
114
115
116
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
117

lintangsutawika's avatar
lintangsutawika committed
118
119
120
    @property
    def group_alias(self):
        return self._config.group_alias
121
122
123
124
125

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
126
127
128
129
130
131
    @property
    def config(self):
        return self._config.to_dict()

    def __repr__(self):
        return (
132
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
133
134
        )

135

136
137
@dataclass
class TaskConfig(dict):
138
    # task naming/registry
139
140
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
141
    tags: Optional[Union[str, list]] = None
142
143
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
144
145
146
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
147
148
149
150
151
152
153
154
155
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
156
157
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
158
159
160
161
162
163
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
164
    description: str = ""
165
166
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
167
    fewshot_config: Optional[dict] = None
168
    # runtime configuration options
169
    num_fewshot: Optional[int] = None
170
    # scoring options
171
172
173
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
174
    repeats: int = 1
175
    filter_list: Optional[Union[str, list]] = None
176
    should_decontaminate: bool = False
177
178
179
180
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
181

Ethan Smith's avatar
Ethan Smith committed
182
    def __post_init__(self) -> None:
183
184
185
186
187
188
189
190
191
192
193

        # TODO Remove in next release
        if (self.group is not None) or (self.group_alias is not None):
            self.tags = self.group
            eval_logger.info(
                f"`group` and `group_alias` will no longer be used in the next release of lm-eval. ",
                f"`tags` will be used to allow to call a collection of tasks just like `group`. ",
                f"`group` will be removed in order to not cause confusion with the new ConfigurableGroup ",
                f"which will be the offical way to create groups with addition of group-wide configuations."
            )

Lintang Sutawika's avatar
Lintang Sutawika committed
194
        if self.generation_kwargs is not None:
195
            if self.output_type != "generate_until":
196
                eval_logger.warning(
197
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
198
199
200
201
202
203
204
205
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
206
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
207
        else:
208
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
209
210
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
211
212
213
214
215
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
216
217
                    "do_sample": False,
                }
218

219
220
221
    def __getitem__(self, item):
        return getattr(self, item)

222
223
224
    def __setitem__(self, item, value):
        return setattr(self, item, value)

225
    def to_dict(self, keep_callable: bool = False) -> dict:
226
227
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
228
        Used for dumping results alongside full task configuration
229

haileyschoelkopf's avatar
haileyschoelkopf committed
230
231
232
233
234
235
236
237
238
239
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
240
241
242
243
244
245
246
247
248
249
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
250
        return cfg_dict
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

268
269
270
271
272
273
274
275
276
277
278

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

279
    VERSION: Optional[Union[int, str]] = None
280

281
282
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
283
    DATASET_PATH: Optional[str] = None
284
285

    # The name of a subset within `DATASET_PATH`.
286
    DATASET_NAME: Optional[str] = None
287

288
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
289

290
291
    def __init__(
        self,
292
293
294
295
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
296
    ) -> None:
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
319
320
321
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
322

323
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
324

lintangsutawika's avatar
lintangsutawika committed
325
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
326
327
328
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
329

330
331
332
333
334
335
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
360
361
362
363
364
365
366
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
367

368
    @property
369
    def config(self) -> TaskConfig:
370
371
372
        """Returns the TaskConfig associated with this class."""
        return self._config

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

388
    def training_docs(self) -> Iterable:
389
390
391
392
393
394
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

395
    def validation_docs(self) -> Iterable:
396
397
398
399
400
401
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

402
    def test_docs(self) -> Iterable:
403
404
405
406
407
408
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

409
    def fewshot_docs(self) -> Iterable:
410
411
412
413
414
415
416
417
418
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
419
            eval_logger.warning(
420
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
421
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
422
            )
423
424
            return self.test_docs()

425
    def _process_doc(self, doc: dict) -> dict:
426
427
428
429
430
431
432
433
434
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
435

436
    @property
437
    def instances(self) -> List[Instance]:
438
439
440
441
442
443
444
445
446
447
448
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

449
450
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
451
452
453
454
455
456
457
458
459
460
461
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

462
463
    def build_all_requests(
        self,
464
        *,
465
466
467
468
469
470
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
471
        """Build a set of Instances for a task, and store them in task.instances"""
472
473
474
475

        # used with caching
        og_limit = limit

476
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
492
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
493

494
        instances = []
495
496
497
498
499
500
501
502
503
504

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
505
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
506
507
508
509
510
511
512
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
513
        ):
514
            # sample fewshot context #TODO: need to offset doc_id by rank now!
515
            fewshot_ctx = self.fewshot_context(
516
                doc,
517
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
518
            )
519

520
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
521
522
523
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
524
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
525
            )
526
527
528
529

            if not isinstance(inst, list):
                inst = [inst]

530
531
532
533
534
535
536
537
538
539
540
541
542
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
543

544
545
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
546

547
548
549
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
566
            The number of times each instance in a dataset is inferred on. Defaults to 1,
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

602
603
604
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
605
606
607
608
609
610
611
612
613
614
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

615
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
616
    def fewshot_context(
617
618
619
        self,
        doc,
        num_fewshot,
620
        rnd=None,
621
        description=None,
lintangsutawika's avatar
lintangsutawika committed
622
    ):
623
624
625
626
627
628
629
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
630
631
632
633
634
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
635
636
637
        :returns: str
            The fewshot context.
        """
638
        if rnd is None:
639
640
641
642
643
644
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
645

646
        description = description if description else ""
647
648

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
649
            labeled_examples = ""
650
        else:
lintangsutawika's avatar
lintangsutawika committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
675
            )
676
677

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
678
        return description + labeled_examples + example
679

680
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
681
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
682
683
        if hasattr(self, "_filters"):
            for f in self._filters:
684
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
685
686
687
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
688

baberabb's avatar
baberabb committed
689
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
690
        """Returns the config as a dictionary."""
691
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
692
        # (num_fewshot)
693
        return self.config.to_dict()
694

Baber Abbasi's avatar
Baber Abbasi committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

735
736
737
738
739
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

740
741
742
743
744
745
746
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
747
748
749
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
750
751
752
753
754
755
756
757
758
759
760
761
762

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

763
764

class ConfigurableTask(Task):
765
    VERSION = "Yaml"
766
    OUTPUT_TYPE = None
767
    CONFIG = None
768
769

    def __init__(
770
771
772
773
774
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
775
    ) -> None:  # TODO no super() call here
776
        # Get pre-configured attributes
777
        self._config = self.CONFIG
778

779
        # Use new configurations if there was no preconfiguration
780
        if self.config is None:
781
            self._config = TaskConfig(**config)
782
783
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
784
            if config is not None:
785
                self._config.__dict__.update(config)
786

787
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
788
789
790
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
791

792
793
794
795
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

796
        if self.config.output_type is not None:
797
798
799
800
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
801
            self.OUTPUT_TYPE = self.config.output_type
802

803
804
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
805

806
807
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
808

809
810
811
812
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
813

814
        if self.config.metric_list is None:
815
            # TODO: handle this in TaskConfig.__post_init__ ?
816
817
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

818
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
819
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
820
                self._metric_fn_kwargs[metric_name] = {}
821
822
823
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
824
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
825
        else:
826
            for metric_config in self.config.metric_list:
827
828
829
830
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
831
832
833
834
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
835
836
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
837
                }
Chris's avatar
Chris committed
838
839
840
841
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
842

843
                if self.config.process_results is not None:
844
845
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
846
847
848
849
850
851
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
852
853
854
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
855
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
856

857
                if "aggregation" in metric_config:
858
                    agg_name = metric_config["aggregation"]
859
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
860
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
861
                    elif callable(agg_name):  # noqa: E721
862
863
864
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
865
                else:
866
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
867
                    metric_agg = get_metric_aggregation(metric_name)
868
                    eval_logger.warning(
869
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
870
871
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
872
                    )
873
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
874

875
876
877
878
879
880
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
881
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
882
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
883
                        f"higher_is_better={is_higher_better(metric_name)}"
884
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
885
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
886

887
        self.download(self.config.dataset_kwargs)
888
889
890
        self._training_docs = None
        self._fewshot_docs = None

891
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
892
            self._filters = []
893
            for filter_config in self.config.filter_list:
894
895
896
897
898
899
900
901
902
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
903
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
904
        else:
905
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
906

907
908
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
909
            self.prompt = get_prompt(
910
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
911
            )
912
913
914
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
915
        if self.fewshot_docs() is not None:
916
917
918
919
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
920
921
922
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
939

940
        self.task_docs = self.eval_docs
941

942
        # Test One Doc
943
        self.features = list(self.task_docs.features.keys())
944
945
        self.multiple_input = 0
        self.multiple_target = 0
946
        test_doc = self.task_docs[0]
947
        test_text = self.doc_to_text(test_doc)
948
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
949

950
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
951
            test_choice = self.doc_to_choice(test_doc)
952
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
953
                eval_logger.error("doc_to_choice must return list")
954
955
            else:
                num_choice = len(test_choice)
956

957
            if isinstance(test_text, int):
958
                self.multiple_input = num_choice
959
960
        else:
            test_choice = None
961

962
        if isinstance(test_target, list):
963
            self.multiple_target = len(test_target)
964
        else:
965
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
966
                test_target = test_choice[test_target]
967
            else:
lintangsutawika's avatar
lintangsutawika committed
968
                test_target = str(test_target)
969

970
971
972
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
973
            check_choices = [test_target]
974
975
976
977
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
978
979
                    True
                    if self.config.target_delimiter.rstrip()
980
                    != self.config.target_delimiter
981
                    else False
982
                )
983

984
                if delimiter_has_whitespace and choice_has_whitespace:
985
986
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
987
988
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
989
                    eval_logger.debug(
990
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
991
992
                    )

993
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
994
995
996
997
998
999
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1000
    def has_training_docs(self) -> bool:
1001
        if self.config.training_split is not None:
1002
1003
1004
1005
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1006
    def has_validation_docs(self) -> bool:
1007
        if self.config.validation_split is not None:
1008
1009
1010
1011
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1012
    def has_test_docs(self) -> bool:
1013
        if self.config.test_split is not None:
1014
1015
1016
1017
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1018
    def training_docs(self) -> datasets.Dataset:
1019
        if self.has_training_docs():
1020
1021
1022
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1023
                )
1024
            return self.dataset[self.config.training_split]
1025

baberabb's avatar
baberabb committed
1026
    def validation_docs(self) -> datasets.Dataset:
1027
        if self.has_validation_docs():
1028
1029
1030
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1031
                )
1032
            return self.dataset[self.config.validation_split]
1033

baberabb's avatar
baberabb committed
1034
    def test_docs(self) -> datasets.Dataset:
1035
        if self.has_test_docs():
1036
1037
1038
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1039

1040
    def fewshot_docs(self):
1041
        if self.config.fewshot_split is not None:
1042
1043
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1044
            return self.dataset[self.config.fewshot_split]
1045
        else:
1046
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1047
                eval_logger.warning(
1048
                    f"Task '{self.config.task}': "
1049
1050
1051
1052
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1053

lintangsutawika's avatar
lintangsutawika committed
1054
    @utils.positional_deprecated
1055
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
1066
1067
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1068
1069
1070

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
1071
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
1072
        else:
1073
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1074
1075

        example = self.doc_to_text(doc)
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1089

1090
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1091
        """Iterates over FilterEnsembles and applies them to instances"""
1092
1093
        if hasattr(self, "_filters"):
            for f in self._filters:
1094
                f.apply(self._instances)
1095
1096
1097
1098
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1099
    def should_decontaminate(self):
1100
        return self.config.should_decontaminate
1101
1102

    def doc_to_decontamination_query(self, doc):
1103
        if self.config.should_decontaminate:
1104
1105
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1106
            else:
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1118

1119
    def _process_doc(self, doc: dict) -> dict:
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1131
1132
        if self.prompt is not None:
            doc_to_text = self.prompt
1133
        else:
1134
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1135

1136
        if isinstance(doc_to_text, int):
1137
            return doc_to_text
1138
        elif isinstance(doc_to_text, str):
1139
            if doc_to_text in self.features:
1140
                # if self.config.doc_to_choice is not None:
1141
1142
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1143
1144
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1145
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1146
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1147
1148
1149
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1150
        elif callable(doc_to_text):
1151
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1152
        # Used when applying a Promptsource template
1153
        elif hasattr(doc_to_text, "apply"):
1154
1155
1156
1157
1158
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1159
                return self.config.fewshot_delimiter
1160
        else:
1161
            print(type(doc_to_text))
1162
            raise TypeError
1163

1164
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1165
1166
        if self.prompt is not None:
            doc_to_target = self.prompt
1167
        else:
1168
            doc_to_target = self.config.doc_to_target
1169

1170
        if isinstance(doc_to_target, int):
1171
            return doc_to_target
1172
        elif isinstance(doc_to_target, str):
1173
            if doc_to_target in self.features:
1174
                # if self.config.doc_to_choice is not None:
1175
1176
1177
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1178
            else:
lintangsutawika's avatar
lintangsutawika committed
1179
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1180
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1181
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1182
1183
1184
1185
1186
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1187
1188
1189
1190
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1191
1192
                else:
                    return target_string
1193
        elif isinstance(doc_to_target, list):
1194
            return doc_to_target
1195
        elif callable(doc_to_target):
1196
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1197
        # Used when applying a Promptsource template
1198
        elif hasattr(doc_to_target, "apply"):
1199
            applied_prompt = doc_to_target.apply(doc)
1200
1201
1202
1203
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1204
                return self.config.fewshot_delimiter
1205
1206
        else:
            raise TypeError
1207

baberabb's avatar
baberabb committed
1208
    def doc_to_choice(self, doc: Any) -> List[str]:
1209
1210
        if self.prompt is not None:
            doc_to_choice = self.prompt
1211
        elif self.config.doc_to_choice is None:
1212
1213
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1214
            doc_to_choice = self.config.doc_to_choice
1215

1216
        if isinstance(doc_to_choice, str):
1217
1218
1219
1220
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1221
        elif isinstance(doc_to_choice, list):
1222
            return doc_to_choice
1223
        elif isinstance(doc_to_choice, dict):
1224
1225
1226
1227
1228
1229
1230
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1231

baberabb's avatar
baberabb committed
1232
1233
1234
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1235
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1236
            arguments = (ctx, self.doc_to_target(doc))
1237
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1238
            arguments = (self.doc_to_target(doc),)
1239
        elif self.OUTPUT_TYPE == "multiple_choice":
1240
            choices = self.doc_to_choice(doc)
1241
            target_delimiter = self.config.target_delimiter
1242
1243
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1244
                cont = self.doc_to_target(doc)
1245
1246
1247
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1248
            else:
1249
                # Otherwise they are placed in the continuation
1250
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1251

1252
            request_list = [
1253
1254
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1255
                    doc=doc,
1256
                    arguments=arg,
1257
                    idx=i,
1258
1259
                    **kwargs,
                )
1260
                for i, arg in enumerate(arguments)
1261
            ]
1262
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1263
            if "acc_mutual_info" in self._metric_fn_list.keys():
1264
1265
1266
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1267
                # here mutual info refers to calculating
1268
1269
1270
1271
1272
1273
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1274
                            doc=doc,
1275
                            arguments=("", "{}".format(choice)),
1276
1277
1278
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1279
                        for i, choice in enumerate(choices)
1280
1281
1282
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1283

1284
        elif self.OUTPUT_TYPE == "generate_until":
1285
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1286
1287

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1288
1289
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1290
1291

    def process_results(self, doc, results):
1292
1293
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1294

1295
        result_dict = {}
1296
        use_metric = list(self._metric_fn_list.keys())
1297
1298
1299
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1300
1301
1302
1303
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1304
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1305
            (loglikelihood,) = results
1306
1307
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1308
            return {
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1324
            }
1325
        elif self.OUTPUT_TYPE == "multiple_choice":
1326
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1327

1328
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1329
            choices = self.doc_to_choice(doc)
1330
1331
            completion_len = np.array([float(len(i)) for i in choices])

1332
1333
            if (
                2 * len(choices) == len(lls)
1334
                and "acc_mutual_info" in self._metric_fn_list.keys()
1335
1336
1337
1338
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1339
1340
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1341
1342
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1343

1344
1345
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1346

1347
1348
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1349
            else:
1350
                gold = self.doc_to_target(doc)
1351
1352

            gold_index_error = False
1353
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1354
1355
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1356
1357
                    gold_index_error = True
            else:
1358
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1359
                    gold = gold if gold < len(choices) else -100
1360
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1361
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1362

Lintang Sutawika's avatar
Lintang Sutawika committed
1363
                if gold == -100:
1364
1365
1366
1367
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1368
                    f"Label index was not in within range of available choices,"
1369
1370
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1371

1372
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1373
1374
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1375
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1376
1377
1378
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1379
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1380
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1381

Lintang Sutawika's avatar
Lintang Sutawika committed
1382
1383
1384
1385
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1386
            result_dict = {
1387
                **({"acc": acc} if "acc" in use_metric else {}),
1388
1389
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1390
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1391
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1392
1393
1394
1395
1396
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1397
1398
            }

1399
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1400
1401
1402
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1403
1404
1405
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1406
        elif self.OUTPUT_TYPE == "generate_until":
1407
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1408
            result = results[0]
1409
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1410
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1411
                # it assumes that doc_to_target returns a number.
1412
1413
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1414
1415
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1416
                gold = list(gold)
Chris's avatar
Chris committed
1417
1418
1419
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1420

lintangsutawika's avatar
lintangsutawika committed
1421
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1422
1423
1424
1425
1426
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1427
1428
1429
1430
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1431
1432
1433
1434
1435
1436
1437
1438
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1439
                    else:
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1461
                else:
1462
                    try:
1463
                        result_score = self._metric_fn_list[metric](
1464
1465
                            references=[gold],
                            predictions=[result],
1466
                            **self._metric_fn_kwargs[metric],
1467
                        )
1468
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1469
                        result_score = self._metric_fn_list[metric]([gold, result])
1470
1471
1472
1473
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1474
        else:
lintangsutawika's avatar
lintangsutawika committed
1475
1476
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1477
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1478
            )
1479
1480
1481

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1482
    def aggregation(self) -> dict:
1483
1484
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1485
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1486
        return self._higher_is_better
1487

Baber Abbasi's avatar
Baber Abbasi committed
1488
1489
1490
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1491
1492
1493
1494
1495
1496
1497
1498
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1499
1500

class MultipleChoiceTask(Task):
1501
    OUTPUT_TYPE = "loglikelihood"
1502

baberabb's avatar
baberabb committed
1503
    def doc_to_target(self, doc: dict) -> str:
1504
1505
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1506
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1507
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1508
1509
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1510
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1511
                doc=doc,
1512
                arguments=(ctx, " {}".format(choice)),
1513
                idx=i,
1514
1515
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1516
1517
            for i, choice in enumerate(doc["choices"])
        ]
1518

1519
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1520
1521
1522
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1534
    def higher_is_better(self) -> dict:
1535
1536
1537
1538
1539
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1540
    def aggregation(self) -> dict:
1541
1542
1543
1544
1545
1546
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1547
class PerplexityTask(Task):
1548
1549
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1550
    def has_training_docs(self) -> bool:
1551
1552
        return False

baberabb's avatar
baberabb committed
1553
    def fewshot_examples(self, k: int, rnd) -> List:
1554
1555
1556
1557
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1558
1559
        return []

baberabb's avatar
baberabb committed
1560
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1561
1562
1563
1564
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1565
1566
1567

        return ""

baberabb's avatar
baberabb committed
1568
    def higher_is_better(self) -> dict:
1569
1570
1571
1572
1573
1574
1575
1576
1577
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1578
    def doc_to_text(self, doc) -> str:
1579
1580
1581
1582
1583
        return ""

    def doc_to_target(self, doc):
        return doc

1584
1585
1586
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1587

lintangsutawika's avatar
lintangsutawika committed
1588
1589
1590
1591
1592
1593
1594
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1595

1596
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1597
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1598
1599
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1600
1601
1602
1603
1604
1605
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1606
    def aggregation(self) -> dict:
1607
1608
1609
1610
1611
1612
1613
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1614
    def count_bytes(cls, doc) -> int:
1615
1616
1617
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1618
    def count_words(cls, doc) -> int:
1619
1620
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))