task.py 67 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
lintangsutawika's avatar
lintangsutawika committed
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
25
import shortuuid
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
57
@dataclass
class AggMetricConfig(dict):
    metric: Optional[str] = "acc"
lintangsutawika's avatar
lintangsutawika committed
58
    metric_alias: Optional[str] = None
59
60
    aggregation: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
61
    filter_list: Optional[Union[str, list]] = "none"
62
63
64
65

    def __post_init__(self):
        if isinstance(self.filter_list, str):
            self.filter_list = [self.filter_list]
lintangsutawika's avatar
lintangsutawika committed
66

lintangsutawika's avatar
lintangsutawika committed
67

lintangsutawika's avatar
lintangsutawika committed
68
69
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
70
71
72
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
73
    tag_to_task: Optional[str] = False
74
    aggregate_metric: Optional[
75
76
        Union[List[AggMetricConfig], AggMetricConfig, dict]
    ] = None
lintangsutawika's avatar
lintangsutawika committed
77
78
79
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
lintangsutawika's avatar
lintangsutawika committed
80
81
82
83
84
85
86

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

87
    def __post_init__(self):
lintangsutawika's avatar
lintangsutawika committed
88
89
90
        if self.aggregate_metric is not None:
            if isinstance(self.aggregate_metric, dict):
                self.aggregate_metric = [self.aggregate_metric]
91

lintangsutawika's avatar
lintangsutawika committed
92
            self.aggregate_metric = [
93
                AggMetricConfig(**item) if isinstance(item, dict) else item
lintangsutawika's avatar
lintangsutawika committed
94
                for item in self.aggregate_metric
95
96
            ]

lintangsutawika's avatar
lintangsutawika committed
97
98
99
100
101
102
103
104
105
106
107
108
109
    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
110
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
131
132
133
134
135
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
lintangsutawika's avatar
lintangsutawika committed
136
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
137
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
138
139
140
141
142
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
143

lintangsutawika's avatar
lintangsutawika committed
144
145
146
    @property
    def group_alias(self):
        return self._config.group_alias
147
148
149
150
151

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
152
153
154
155
    @property
    def config(self):
        return self._config.to_dict()

lintangsutawika's avatar
lintangsutawika committed
156
157
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
158
159
160
161
162
        return "-".join((self.group_name, self._task_id))

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
163

lintangsutawika's avatar
lintangsutawika committed
164
165
    def __repr__(self):
        return (
166
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
167
168
        )

169

170
171
@dataclass
class TaskConfig(dict):
172
    # task naming/registry
173
174
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
175
    tag: Optional[Union[str, list]] = None
176
    group: Optional[Union[str, list]] = None
177
178
179
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
180
181
182
183
184
185
186
187
188
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
189
190
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
191
192
193
194
195
196
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
197
    description: str = ""
198
199
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
200
    fewshot_config: Optional[dict] = None
201
    # runtime configuration options
202
    num_fewshot: Optional[int] = None
203
    # scoring options
204
205
206
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
207
    repeats: int = 1
208
    filter_list: Optional[Union[str, list]] = None
209
    should_decontaminate: bool = False
210
211
212
213
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
214

Ethan Smith's avatar
Ethan Smith committed
215
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
216
        if self.generation_kwargs is not None:
217
            if self.output_type != "generate_until":
218
                eval_logger.warning(
219
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
220
221
222
223
224
225
226
227
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
228
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
229
        else:
230
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
231
232
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
233
234
235
236
237
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
238
239
                    "do_sample": False,
                }
240

241
242
243
    def __getitem__(self, item):
        return getattr(self, item)

244
245
246
    def __setitem__(self, item, value):
        return setattr(self, item, value)

247
    def to_dict(self, keep_callable: bool = False) -> dict:
248
249
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
250
        Used for dumping results alongside full task configuration
251

haileyschoelkopf's avatar
haileyschoelkopf committed
252
253
254
255
256
257
258
259
260
261
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
262
263
264
265
266
267
268
269
270
271
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
272
        return cfg_dict
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

290
291
292
293
294
295
296
297
298
299
300

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

301
    VERSION: Optional[Union[int, str]] = None
302

303
304
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
305
    DATASET_PATH: Optional[str] = None
306
307

    # The name of a subset within `DATASET_PATH`.
308
    DATASET_NAME: Optional[str] = None
309

310
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
311

312
313
    def __init__(
        self,
314
315
316
317
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
318
    ) -> None:
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
341
342
343
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
344

345
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
346
        self._task_id = shortuuid.uuid()[:8]
347
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
348

lintangsutawika's avatar
lintangsutawika committed
349
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
350
351
352
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
353

354
355
356
357
358
359
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
384
385
386
387
388
389
390
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
391

392
    @property
393
    def config(self) -> TaskConfig:
394
395
396
        """Returns the TaskConfig associated with this class."""
        return self._config

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

412
    def training_docs(self) -> Iterable:
413
414
415
416
417
418
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

419
    def validation_docs(self) -> Iterable:
420
421
422
423
424
425
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

426
    def test_docs(self) -> Iterable:
427
428
429
430
431
432
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

433
    def fewshot_docs(self) -> Iterable:
434
435
436
437
438
439
440
441
442
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
443
            eval_logger.warning(
444
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
445
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
446
            )
447
448
            return self.test_docs()

449
    def _process_doc(self, doc: dict) -> dict:
450
451
452
453
454
455
456
457
458
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
459

460
    @property
461
    def instances(self) -> List[Instance]:
462
463
464
465
466
467
468
469
470
471
472
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

473
474
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
475
476
477
478
479
480
481
482
483
484
485
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

486
487
    def build_all_requests(
        self,
488
        *,
489
490
491
492
493
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
494
495
496
497
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
498
    ) -> None:
499
        """Build a set of Instances for a task, and store them in task.instances"""
500
501
502
503

        # used with caching
        og_limit = limit

504
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
505
506
507
508
509
510
511
512
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
528
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
529

530
        instances = []
531
532
533
534
535
536
537
538
539
540

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
541
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
542
543
544
545
546
547
548
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
549
        ):
550
            # sample fewshot context #TODO: need to offset doc_id by rank now!
551
            fewshot_ctx = self.fewshot_context(
552
                doc,
553
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
554
555
556
557
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
558
            )
559

560
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
561
562
563
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
564
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
565
            )
566
567
568
569

            if not isinstance(inst, list):
                inst = [inst]

570
571
572
573
574
575
576
577
578
579
580
581
582
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
583

584
585
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
586

587
588
589
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
606
            The number of times each instance in a dataset is inferred on. Defaults to 1,
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

642
643
644
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
645
646
647
648
649
650
651
652
653
654
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

655
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
656
    def fewshot_context(
657
658
659
        self,
        doc,
        num_fewshot,
660
        rnd=None,
661
        description=None,
lintangsutawika's avatar
lintangsutawika committed
662
    ):
663
664
665
666
667
668
669
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
670
671
672
673
674
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
675
676
677
        :returns: str
            The fewshot context.
        """
678
        if rnd is None:
679
680
681
682
683
684
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
685

686
        description = description if description else ""
687
688

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
689
            labeled_examples = ""
690
        else:
lintangsutawika's avatar
lintangsutawika committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
715
            )
716
717

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
718
        return description + labeled_examples + example
719

720
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
721
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
722
723
        if hasattr(self, "_filters"):
            for f in self._filters:
724
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
725
726
727
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
728

baberabb's avatar
baberabb committed
729
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
730
        """Returns the config as a dictionary."""
731
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
732
        # (num_fewshot)
733
        return self.config.to_dict()
734

Baber Abbasi's avatar
Baber Abbasi committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

775
776
777
778
779
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

780
781
782
783
784
785
786
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
787
788
789
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
790
791
792
793
794
795
796
797
798
799
800
801
802

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

803
804
805
    @property
    def task_id(self) -> Any:
        return self._task_id
806

807

808
class ConfigurableTask(Task):
809
    VERSION = "Yaml"
810
    OUTPUT_TYPE = None
811
    CONFIG = None
812
813

    def __init__(
814
815
816
817
818
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
819
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
820
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
821
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
822

823
        # Get pre-configured attributes
824
        self._config = self.CONFIG
825

826
        # Use new configurations if there was no preconfiguration
827
        if self.config is None:
828
            self._config = TaskConfig(**config)
829
830
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
831
            if config is not None:
832
                self._config.__dict__.update(config)
833

834
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
835
836
837
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
838

839
840
841
842
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

843
        if self.config.output_type is not None:
844
845
846
847
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
848
            self.OUTPUT_TYPE = self.config.output_type
849

850
851
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
852

853
854
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
855

856
857
858
859
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
860

861
        if self.config.metric_list is None:
862
            # TODO: handle this in TaskConfig.__post_init__ ?
863
864
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

865
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
866
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
867
                self._metric_fn_kwargs[metric_name] = {}
868
869
870
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
871
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
872
        else:
873
            for metric_config in self.config.metric_list:
874
875
876
877
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
878
879
880
881
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
882
883
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
884
                }
Chris's avatar
Chris committed
885
886
887
888
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
889

890
                if self.config.process_results is not None:
891
892
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
893
894
895
896
897
898
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
899
900
901
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
902
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
903

904
                if "aggregation" in metric_config:
905
                    agg_name = metric_config["aggregation"]
906
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
907
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
908
                    elif callable(agg_name):  # noqa: E721
909
910
911
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
912
                else:
913
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
914
                    metric_agg = get_metric_aggregation(metric_name)
915
                    eval_logger.warning(
916
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
917
918
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
919
                    )
920
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
921

922
923
924
925
926
927
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
928
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
929
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
930
                        f"higher_is_better={is_higher_better(metric_name)}"
931
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
932
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
933

934
        self.download(self.config.dataset_kwargs)
935
936
937
        self._training_docs = None
        self._fewshot_docs = None

938
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
939
            self._filters = []
940
            for filter_config in self.config.filter_list:
941
942
943
944
945
946
947
948
949
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
950
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
951
        else:
952
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
953

954
955
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
956
            self.prompt = get_prompt(
957
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
958
            )
959
960
961
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
962
        if self.fewshot_docs() is not None:
963
964
965
966
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
967
968
969
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
986

987
        self.task_docs = self.eval_docs
988

989
        # Test One Doc
990
        self.features = list(self.task_docs.features.keys())
991
992
        self.multiple_input = 0
        self.multiple_target = 0
993
        test_doc = self.task_docs[0]
994
        test_text = self.doc_to_text(test_doc)
995
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
996

997
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
998
            test_choice = self.doc_to_choice(test_doc)
999
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
1000
                eval_logger.error("doc_to_choice must return list")
1001
1002
            else:
                num_choice = len(test_choice)
1003

1004
            if isinstance(test_text, int):
1005
                self.multiple_input = num_choice
1006
1007
        else:
            test_choice = None
1008

1009
        if isinstance(test_target, list):
1010
            self.multiple_target = len(test_target)
1011
        else:
1012
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1013
                test_target = test_choice[test_target]
1014
            else:
lintangsutawika's avatar
lintangsutawika committed
1015
                test_target = str(test_target)
1016

1017
1018
1019
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1020
            check_choices = [test_target]
1021
1022
1023
1024
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1025
1026
                    True
                    if self.config.target_delimiter.rstrip()
1027
                    != self.config.target_delimiter
1028
                    else False
1029
                )
1030

1031
                if delimiter_has_whitespace and choice_has_whitespace:
1032
1033
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1034
1035
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1036
                    eval_logger.debug(
1037
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1038
1039
                    )

1040
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1041
1042
1043
1044
1045
1046
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1047
    def has_training_docs(self) -> bool:
1048
        if self.config.training_split is not None:
1049
1050
1051
1052
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1053
    def has_validation_docs(self) -> bool:
1054
        if self.config.validation_split is not None:
1055
1056
1057
1058
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1059
    def has_test_docs(self) -> bool:
1060
        if self.config.test_split is not None:
1061
1062
1063
1064
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1065
    def training_docs(self) -> datasets.Dataset:
1066
        if self.has_training_docs():
1067
1068
1069
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1070
                )
1071
            return self.dataset[self.config.training_split]
1072

baberabb's avatar
baberabb committed
1073
    def validation_docs(self) -> datasets.Dataset:
1074
        if self.has_validation_docs():
1075
1076
1077
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1078
                )
1079
            return self.dataset[self.config.validation_split]
1080

baberabb's avatar
baberabb committed
1081
    def test_docs(self) -> datasets.Dataset:
1082
        if self.has_test_docs():
1083
1084
1085
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1086

1087
    def fewshot_docs(self):
1088
        if self.config.fewshot_split is not None:
1089
1090
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1091
            return self.dataset[self.config.fewshot_split]
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1104
        else:
1105
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1106
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1107
                    f"[Task: {self.config.task}] "
1108
1109
1110
1111
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1112

KonradSzafer's avatar
KonradSzafer committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1134
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1144
1145
1146
1147
1148
1149
1150
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1151
1152
1153
1154
1155
1156
1157
1158
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1159
1160
1161
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1162
1163
1164
1165
1166
1167
1168

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1169
1170
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1171

KonradSzafer's avatar
KonradSzafer committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1181
        else:
KonradSzafer's avatar
KonradSzafer committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1201
1202

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1232
        else:
KonradSzafer's avatar
KonradSzafer committed
1233
1234
            if self.multiple_input:
                return labeled_examples
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1245

1246
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1247
        """Iterates over FilterEnsembles and applies them to instances"""
1248
1249
        if hasattr(self, "_filters"):
            for f in self._filters:
1250
                f.apply(self._instances)
1251
1252
1253
1254
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1255
    def should_decontaminate(self):
1256
        return self.config.should_decontaminate
1257
1258

    def doc_to_decontamination_query(self, doc):
1259
        if self.config.should_decontaminate:
1260
1261
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1262
            else:
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1274

1275
    def _process_doc(self, doc: dict) -> dict:
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1287
1288
        if self.prompt is not None:
            doc_to_text = self.prompt
1289
        else:
1290
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1291

1292
        if isinstance(doc_to_text, int):
1293
            return doc_to_text
1294
        elif isinstance(doc_to_text, str):
1295
            if doc_to_text in self.features:
1296
                # if self.config.doc_to_choice is not None:
1297
1298
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1299
1300
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1301
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1302
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1303
1304
1305
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1306
        elif callable(doc_to_text):
1307
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1308
        # Used when applying a Promptsource template
1309
        elif hasattr(doc_to_text, "apply"):
1310
1311
1312
1313
1314
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1315
                return self.config.fewshot_delimiter
1316
        else:
1317
            print(type(doc_to_text))
1318
            raise TypeError
1319

1320
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1321
1322
        if self.prompt is not None:
            doc_to_target = self.prompt
1323
        else:
1324
            doc_to_target = self.config.doc_to_target
1325

1326
        if isinstance(doc_to_target, int):
1327
            return doc_to_target
1328
        elif isinstance(doc_to_target, str):
1329
            if doc_to_target in self.features:
1330
                # if self.config.doc_to_choice is not None:
1331
1332
1333
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1334
            else:
lintangsutawika's avatar
lintangsutawika committed
1335
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1336
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1337
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1338
1339
1340
1341
1342
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1343
1344
1345
1346
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1347
1348
                else:
                    return target_string
1349
        elif isinstance(doc_to_target, list):
1350
            return doc_to_target
1351
        elif callable(doc_to_target):
1352
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1353
        # Used when applying a Promptsource template
1354
        elif hasattr(doc_to_target, "apply"):
1355
            applied_prompt = doc_to_target.apply(doc)
1356
1357
1358
1359
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1360
                return self.config.fewshot_delimiter
1361
1362
        else:
            raise TypeError
1363

baberabb's avatar
baberabb committed
1364
    def doc_to_choice(self, doc: Any) -> List[str]:
1365
1366
        if self.prompt is not None:
            doc_to_choice = self.prompt
1367
        elif self.config.doc_to_choice is None:
1368
1369
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1370
            doc_to_choice = self.config.doc_to_choice
1371

1372
        if isinstance(doc_to_choice, str):
1373
1374
1375
1376
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1377
        elif isinstance(doc_to_choice, list):
1378
            return doc_to_choice
1379
        elif isinstance(doc_to_choice, dict):
1380
1381
1382
1383
1384
1385
1386
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1387

baberabb's avatar
baberabb committed
1388
1389
1390
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1391
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1392
            arguments = (ctx, self.doc_to_target(doc))
1393
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1394
            arguments = (self.doc_to_target(doc),)
1395
        elif self.OUTPUT_TYPE == "multiple_choice":
1396
            choices = self.doc_to_choice(doc)
1397
            target_delimiter = self.config.target_delimiter
1398
1399
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1400
                cont = self.doc_to_target(doc)
1401
1402
1403
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1404
            else:
1405
                # Otherwise they are placed in the continuation
1406
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1407

1408
            request_list = [
1409
1410
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1411
                    doc=doc,
1412
                    arguments=arg,
1413
                    idx=i,
1414
1415
                    **kwargs,
                )
1416
                for i, arg in enumerate(arguments)
1417
            ]
1418
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1419
            if "acc_mutual_info" in self._metric_fn_list.keys():
1420
1421
1422
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1423
                # here mutual info refers to calculating
1424
1425
1426
1427
1428
1429
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1430
                            doc=doc,
1431
                            arguments=("", "{}".format(choice)),
1432
1433
1434
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1435
                        for i, choice in enumerate(choices)
1436
1437
1438
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1439

1440
        elif self.OUTPUT_TYPE == "generate_until":
1441
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1442
1443

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1444
1445
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1446
1447

    def process_results(self, doc, results):
1448
1449
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1450

1451
        result_dict = {}
1452
        use_metric = list(self._metric_fn_list.keys())
1453
1454
1455
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1456
1457
1458
1459
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1460
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1461
            (loglikelihood,) = results
1462
1463
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1464
            return {
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1480
            }
1481
        elif self.OUTPUT_TYPE == "multiple_choice":
1482
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1483

1484
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1485
            choices = self.doc_to_choice(doc)
1486
1487
            completion_len = np.array([float(len(i)) for i in choices])

1488
1489
            if (
                2 * len(choices) == len(lls)
1490
                and "acc_mutual_info" in self._metric_fn_list.keys()
1491
1492
1493
1494
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1495
1496
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1497
1498
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1499

1500
1501
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1502

1503
1504
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1505
            else:
1506
                gold = self.doc_to_target(doc)
1507
1508

            gold_index_error = False
1509
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1510
1511
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1512
1513
                    gold_index_error = True
            else:
1514
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1515
                    gold = gold if gold < len(choices) else -100
1516
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1517
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1518

Lintang Sutawika's avatar
Lintang Sutawika committed
1519
                if gold == -100:
1520
1521
1522
1523
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1524
                    f"Label index was not in within range of available choices,"
1525
1526
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1527

1528
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1529
1530
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1531
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1532
1533
1534
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1535
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1536
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1537

Lintang Sutawika's avatar
Lintang Sutawika committed
1538
1539
1540
1541
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1542
            result_dict = {
1543
                **({"acc": acc} if "acc" in use_metric else {}),
1544
1545
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1546
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1547
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1548
1549
1550
1551
1552
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1553
1554
            }

1555
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1556
1557
1558
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1559
1560
1561
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1562
        elif self.OUTPUT_TYPE == "generate_until":
1563
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1564
            result = results[0]
1565
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1566
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1567
                # it assumes that doc_to_target returns a number.
1568
1569
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1570
1571
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1572
                gold = list(gold)
Chris's avatar
Chris committed
1573
1574
1575
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1576

lintangsutawika's avatar
lintangsutawika committed
1577
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1578
1579
1580
1581
1582
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1583
1584
1585
1586
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1587
1588
1589
1590
1591
1592
1593
1594
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1595
                    else:
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1617
                else:
1618
                    try:
1619
                        result_score = self._metric_fn_list[metric](
1620
1621
                            references=[gold],
                            predictions=[result],
1622
                            **self._metric_fn_kwargs[metric],
1623
                        )
1624
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1625
                        result_score = self._metric_fn_list[metric]([gold, result])
1626
1627
1628
1629
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1630
        else:
lintangsutawika's avatar
lintangsutawika committed
1631
1632
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1633
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1634
            )
1635
1636
1637

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1638
    def aggregation(self) -> dict:
1639
1640
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1641
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1642
        return self._higher_is_better
1643

Baber Abbasi's avatar
Baber Abbasi committed
1644
1645
1646
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1647
1648
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
1649
1650
1651
1652
1653
        return "-".join((self.task_name, self._task_id))

    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1654

1655
1656
1657
1658
1659
1660
1661
1662
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1663
1664

class MultipleChoiceTask(Task):
1665
    OUTPUT_TYPE = "loglikelihood"
1666

baberabb's avatar
baberabb committed
1667
    def doc_to_target(self, doc: dict) -> str:
1668
1669
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1670
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1671
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1672
1673
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1674
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1675
                doc=doc,
1676
                arguments=(ctx, " {}".format(choice)),
1677
                idx=i,
1678
1679
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1680
1681
            for i, choice in enumerate(doc["choices"])
        ]
1682

1683
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1684
1685
1686
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1698
    def higher_is_better(self) -> dict:
1699
1700
1701
1702
1703
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1704
    def aggregation(self) -> dict:
1705
1706
1707
1708
1709
1710
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1711
class PerplexityTask(Task):
1712
1713
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1714
    def has_training_docs(self) -> bool:
1715
1716
        return False

baberabb's avatar
baberabb committed
1717
    def fewshot_examples(self, k: int, rnd) -> List:
1718
1719
1720
1721
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1722
1723
        return []

baberabb's avatar
baberabb committed
1724
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1725
1726
1727
1728
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1729
1730
1731

        return ""

baberabb's avatar
baberabb committed
1732
    def higher_is_better(self) -> dict:
1733
1734
1735
1736
1737
1738
1739
1740
1741
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1742
    def doc_to_text(self, doc) -> str:
1743
1744
1745
1746
1747
        return ""

    def doc_to_target(self, doc):
        return doc

1748
1749
1750
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1751

lintangsutawika's avatar
lintangsutawika committed
1752
1753
1754
1755
1756
1757
1758
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1759

1760
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1761
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1762
1763
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1764
1765
1766
1767
1768
1769
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1770
    def aggregation(self) -> dict:
1771
1772
1773
1774
1775
1776
1777
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1778
    def count_bytes(cls, doc) -> int:
1779
1780
1781
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1782
    def count_words(cls, doc) -> int:
1783
1784
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))