task.py 54.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
from typing import Any, List, Literal, Tuple, Union
11
12
13

import datasets
import numpy as np
14
from tqdm import tqdm
15
16

from lm_eval import utils
17
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
18
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
19
from lm_eval.api.metrics import (
20
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
21
22
23
24
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
25
26
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
27
    get_aggregation,
28
    get_metric,
29
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
30
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
31
)
32
from lm_eval.caching.cache import load_from_cache, save_to_cache
33
34
35
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

36

37
38
39
40
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
41
    "generate_until",
42
43
]

44
eval_logger = logging.getLogger("lm-eval")
45

lintangsutawika's avatar
lintangsutawika committed
46

47
48
@dataclass
class TaskConfig(dict):
49
    # task naming/registry
50
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
51
    task_alias: str = None
52
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
53
    group_alias: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    process_docs: Callable = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
69
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
70
    process_results: Union[Callable, str] = None
71
    use_prompt: str = None
72
    description: str = ""
73
74
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
75
    fewshot_config: dict = None
76
    # runtime configuration options
77
    num_fewshot: int = None
78
    # scoring options
79
    metric_list: list = None
80
81
82
83
84
85
    output_type: Literal[
        "loglikelihood",
        "loglikelihood_rolling",
        "generate_until",
        "multiple_choice",
    ] = "generate_until"
86
    generation_kwargs: dict = None
87
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
88
    filter_list: Union[str, list] = None
89
90
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
91
    metadata: dict = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
92

Ethan Smith's avatar
Ethan Smith committed
93
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
94
        if self.generation_kwargs is not None:
95
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
96
                eval_logger.warning(
97
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
98
                )
99
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
100
101
102
103
104
105
106

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
107
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
108
        else:
109
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
110
111
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
112
113
114
115
116
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                    "do_sample": False,
                }
119

120
121
122
    def __getitem__(self, item):
        return getattr(self, item)

123
124
125
    def __setitem__(self, item, value):
        return setattr(self, item, value)

126
    def to_dict(self, keep_callable: bool = False) -> dict:
127
128
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
129
        Used for dumping results alongside full task configuration
130

haileyschoelkopf's avatar
haileyschoelkopf committed
131
132
133
134
135
136
137
138
139
140
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
141
142
143
144
145
146
147
148
149
150
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
151
        return cfg_dict
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

169
170
171
172
173
174
175
176
177
178
179
180

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
181

182
183
184
185
186
187
188
189
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
190

191
192
193
194
195
196
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
197
    ) -> None:
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
224
        self._config = TaskConfig({**config}) if config else TaskConfig()
225

lintangsutawika's avatar
lintangsutawika committed
226
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
227

Ethan Smith's avatar
Ethan Smith committed
228
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
253
254
255
256
257
258
259
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
260

261
262
263
264
265
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

302
303
304
305
306
307
308
309
310
311
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
312
            eval_logger.warning(
313
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
314
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
315
            )
316
317
            return self.test_docs()

318
319
320
321
322
323
324
325
326
327
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
328

329
330
331
332
333
334
335
336
337
338
339
340
341
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
342
    def doc_to_decontamination_query(self, doc) -> None:
343
344
345
346
347
348
349
350
351
352
353
354
355
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

356
357
358
359
360
361
362
363
    def build_all_requests(
        self,
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
364
        """Build a set of Instances for a task, and store them in task.instances"""
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

        # used with caching
        og_limit = limit

        cache_key = f"requests-{self._config.task}"

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

385
386
387
388
389
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
390
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
391

Baber Abbasi's avatar
Baber Abbasi committed
392
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
393

394
        instances = []
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
            utils.create_iterator(
                enumerate(docs),
                rank,
                world_size,
                limit,
            )
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
418
        ):
419
            # sample fewshot context #TODO: need to offset doc_id by rank now!
420
            fewshot_ctx = self.fewshot_context(
421
                doc,
422
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
423
            )
424

425
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
426
427
428
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
429
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
430
            )
431
432
433
434

            if not isinstance(inst, list):
                inst = [inst]

435
436
437
438
439
440
441
442
443
444
445
446
447
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
448
449
450

        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

451
452
453
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
470
            The number of times each instance in a dataset is inferred on. Defaults to 1,
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

506
507
508
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
509
510
511
512
513
514
515
516
517
518
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

519
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
520
    def fewshot_context(
521
522
523
524
525
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
526
    ):
527
528
529
530
531
532
533
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
534
535
536
537
538
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
539
540
541
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
542
543
544
545
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

546
        description = description if description else ""
547
548

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
549
            labeled_examples = ""
550
        else:
lintangsutawika's avatar
lintangsutawika committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
575
            )
576
577

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
578
        return description + labeled_examples + example
579
580

    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
581
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
582
583
        if hasattr(self, "_filters"):
            for f in self._filters:
584
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
585
586
587
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
588

baberabb's avatar
baberabb committed
589
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
590
        """Returns the config as a dictionary."""
591
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
592
        # (num_fewshot)
593
        return self.config.to_dict()
594

Baber Abbasi's avatar
Baber Abbasi committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

635
636

class ConfigurableTask(Task):
637
    VERSION = "Yaml"
638
    OUTPUT_TYPE = None
639
    CONFIG = None
640
641
642

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
643
    ) -> None:  # TODO no super() call here
644
        # Get pre-configured attributes
645
        self._config = self.CONFIG
646

647
        # Use new configurations if there was no preconfiguration
648
        if self.config is None:
649
            self._config = TaskConfig(**config)
650
651
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
652
            if config is not None:
653
                self._config.__dict__.update(config)
654

655
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
656
657
658
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
659

660
661
662
663
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

664
665
666
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
667

668
669
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
670

671
672
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
673

674
675
676
677
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
678

679
        if self.config.metric_list is None:
680
            # TODO: handle this in TaskConfig.__post_init__ ?
681
682
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

683
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
684
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
685
                self._metric_fn_kwargs[metric_name] = {}
686
687
688
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
689
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
690
        else:
691
            for metric_config in self.config.metric_list:
692
693
694
695
696
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
697
698
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
699
                }
Chris's avatar
Chris committed
700
701
702
703
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
704

705
                if self.config.process_results is not None:
706
707
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
708
709
710
711
712
713
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
714
715
716
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
717
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
718

719
                if "aggregation" in metric_config:
720
                    agg_name = metric_config["aggregation"]
721
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
722
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
723
                    elif callable(agg_name):  # noqa: E721
724
725
726
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
727
                else:
728
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
729
                    metric_agg = get_metric_aggregation(metric_name)
730
                    eval_logger.warning(
731
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
732
733
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
734
                    )
735
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
736

737
738
739
740
741
742
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
743
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
744
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
745
                        f"higher_is_better={is_higher_better(metric_name)}"
746
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
747
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
748

749
        self.download(self.config.dataset_kwargs)
750
751
752
        self._training_docs = None
        self._fewshot_docs = None

753
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
754
            self._filters = []
755
            for filter_config in self.config.filter_list:
756
757
758
759
760
761
762
763
764
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
765
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
766
        else:
767
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
768

769
770
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
771
            self.prompt = get_prompt(
772
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
773
            )
774
775
776
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
777
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
778
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
779
780
781
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
782
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
783

784
        if self.has_test_docs():
785
            self.task_docs = self.test_docs()
786
        elif self.has_validation_docs():
787
            self.task_docs = self.validation_docs()
788
        else:
789
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
790

791
        # Test One Doc
792
        self.features = list(self.task_docs.features.keys())
793
794
        self.multiple_input = 0
        self.multiple_target = 0
795
        test_doc = self.task_docs[0]
796
        test_text = self.doc_to_text(test_doc)
797
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
798

799
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
800
            test_choice = self.doc_to_choice(test_doc)
801
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
802
                eval_logger.error("doc_to_choice must return list")
803
804
            else:
                num_choice = len(test_choice)
805

806
            if isinstance(test_text, int):
807
                self.multiple_input = num_choice
808
809
        else:
            test_choice = None
810

811
        if isinstance(test_target, list):
812
            self.multiple_target = len(test_target)
813
        else:
814
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
815
                test_target = test_choice[test_target]
816
            else:
lintangsutawika's avatar
lintangsutawika committed
817
                test_target = str(test_target)
818

819
820
821
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
822
            check_choices = [test_target]
823
824
825
826
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
827
828
                    True
                    if self.config.target_delimiter.rstrip()
829
                    != self.config.target_delimiter
830
                    else False
831
                )
832

833
                if delimiter_has_whitespace and choice_has_whitespace:
834
835
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
836
837
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
838
                    eval_logger.debug(
839
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
840
841
                    )

Ethan Smith's avatar
Ethan Smith committed
842
    def download(self, dataset_kwargs=None) -> None:
843
844
845
846
847
848
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
849
    def has_training_docs(self) -> bool:
850
        if self.config.training_split is not None:
851
852
853
854
            return True
        else:
            return False

baberabb's avatar
baberabb committed
855
    def has_validation_docs(self) -> bool:
856
        if self.config.validation_split is not None:
857
858
859
860
            return True
        else:
            return False

baberabb's avatar
baberabb committed
861
    def has_test_docs(self) -> bool:
862
        if self.config.test_split is not None:
863
864
865
866
            return True
        else:
            return False

baberabb's avatar
baberabb committed
867
    def training_docs(self) -> datasets.Dataset:
868
        if self.has_training_docs():
869
870
871
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
872
                )
873
            return self.dataset[self.config.training_split]
874

baberabb's avatar
baberabb committed
875
    def validation_docs(self) -> datasets.Dataset:
876
        if self.has_validation_docs():
877
878
879
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
880
                )
881
            return self.dataset[self.config.validation_split]
882

baberabb's avatar
baberabb committed
883
    def test_docs(self) -> datasets.Dataset:
884
        if self.has_test_docs():
885
886
887
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
888

889
    def fewshot_docs(self):
890
        if self.config.fewshot_split is not None:
891
892
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
893
            return self.dataset[self.config.fewshot_split]
894
        else:
895
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
896
                eval_logger.warning(
897
                    f"Task '{self.config.task}': "
898
899
900
901
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
902

lintangsutawika's avatar
lintangsutawika committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
925
926
927
928
929
930
931
932
933
934
935
936
937
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
938

939
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
940
        """Iterates over FilterEnsembles and applies them to instances"""
941
942
        if hasattr(self, "_filters"):
            for f in self._filters:
943
                f.apply(self._instances)
944
945
946
947
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

948
    def should_decontaminate(self):
949
        return self.config.should_decontaminate
950
951

    def doc_to_decontamination_query(self, doc):
952
        if self.config.should_decontaminate:
953
954
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
955
            else:
956
957
958
959
960
961
962
963
964
965
966
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
967

968
969
970
971
972
973
974
975
976
977
978
979
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
980
981
        if self.prompt is not None:
            doc_to_text = self.prompt
982
        else:
983
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
984

985
        if isinstance(doc_to_text, int):
986
            return doc_to_text
987
        elif isinstance(doc_to_text, str):
988
            if doc_to_text in self.features:
989
                # if self.config.doc_to_choice is not None:
990
991
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
992
993
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
994
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
995
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
996
997
998
                    return ast.literal_eval(text_string)
                else:
                    return text_string
999
        elif callable(doc_to_text):
1000
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1001
        # Used when applying a Promptsource template
1002
        elif hasattr(doc_to_text, "apply"):
1003
1004
1005
1006
1007
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1008
                return self.config.fewshot_delimiter
1009
        else:
1010
            print(type(doc_to_text))
1011
            raise TypeError
1012

1013
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
1014
1015
        if self.prompt is not None:
            doc_to_target = self.prompt
1016
        else:
1017
            doc_to_target = self.config.doc_to_target
1018

1019
        if isinstance(doc_to_target, int):
1020
            return doc_to_target
1021
        elif isinstance(doc_to_target, str):
1022
            if doc_to_target in self.features:
1023
                # if self.config.doc_to_choice is not None:
1024
1025
1026
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1027
            else:
lintangsutawika's avatar
lintangsutawika committed
1028
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1029
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1030
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1031
1032
1033
1034
1035
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1036
1037
1038
1039
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1040
1041
                else:
                    return target_string
1042
        elif isinstance(doc_to_target, list):
1043
            return doc_to_target
1044
        elif callable(doc_to_target):
1045
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1046
        # Used when applying a Promptsource template
1047
        elif hasattr(doc_to_target, "apply"):
1048
            applied_prompt = doc_to_target.apply(doc)
1049
1050
1051
1052
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1053
                return self.config.fewshot_delimiter
1054
1055
        else:
            raise TypeError
1056

baberabb's avatar
baberabb committed
1057
    def doc_to_choice(self, doc: Any) -> List[str]:
1058
1059
        if self.prompt is not None:
            doc_to_choice = self.prompt
1060
        elif self.config.doc_to_choice is None:
1061
1062
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1063
            doc_to_choice = self.config.doc_to_choice
1064

1065
        if isinstance(doc_to_choice, str):
1066
1067
1068
1069
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1070
        elif isinstance(doc_to_choice, list):
1071
            return doc_to_choice
1072
        elif isinstance(doc_to_choice, dict):
1073
1074
1075
1076
1077
1078
1079
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1080

baberabb's avatar
baberabb committed
1081
1082
1083
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1084
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1085
            arguments = (ctx, self.doc_to_target(doc))
1086
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1087
            arguments = (self.doc_to_target(doc),)
1088
        elif self.OUTPUT_TYPE == "multiple_choice":
1089
            choices = self.doc_to_choice(doc)
1090
            target_delimiter = self.config.target_delimiter
1091
1092
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1093
                cont = self.doc_to_target(doc)
1094
1095
1096
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1097
            else:
1098
                # Otherwise they are placed in the continuation
1099
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1100

1101
            request_list = [
1102
1103
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1104
                    doc=doc,
1105
                    arguments=arg,
1106
                    idx=i,
1107
1108
                    **kwargs,
                )
1109
                for i, arg in enumerate(arguments)
1110
            ]
1111
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1112
            if "acc_mutual_info" in self._metric_fn_list.keys():
1113
1114
1115
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1116
                # here mutual info refers to calculating
1117
1118
1119
1120
1121
1122
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1123
                            doc=doc,
1124
                            arguments=("", "{}".format(choice)),
1125
1126
1127
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1128
                        for i, choice in enumerate(choices)
1129
1130
1131
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1132

1133
        elif self.OUTPUT_TYPE == "generate_until":
1134
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1135
1136

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1137
1138
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1139
1140

    def process_results(self, doc, results):
1141
1142
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1143

1144
        result_dict = {}
1145
        use_metric = list(self._metric_fn_list.keys())
1146
1147
1148
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1149
1150
1151
1152
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1153
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1154
            (loglikelihood,) = results
1155
1156
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1157
            return {
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1173
            }
1174
        elif self.OUTPUT_TYPE == "multiple_choice":
1175
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1176

1177
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1178
            choices = self.doc_to_choice(doc)
1179
1180
            completion_len = np.array([float(len(i)) for i in choices])

1181
1182
            if (
                2 * len(choices) == len(lls)
1183
                and "acc_mutual_info" in self._metric_fn_list.keys()
1184
1185
1186
1187
1188
1189
1190
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1191

1192
1193
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1194

1195
1196
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1197
            else:
1198
                gold = self.doc_to_target(doc)
1199
1200

            gold_index_error = False
1201
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1202
1203
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1204
1205
                    gold_index_error = True
            else:
1206
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1207
                    gold = gold if gold < len(choices) else -100
1208
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1209
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1210

Lintang Sutawika's avatar
Lintang Sutawika committed
1211
                if gold == -100:
1212
1213
1214
1215
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1216
                    f"Label index was not in within range of available choices,"
1217
1218
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1219

1220
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1221
1222
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1223
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1224
1225
1226
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1227
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1228
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1229
1230

            result_dict = {
1231
                **({"acc": acc} if "acc" in use_metric else {}),
1232
1233
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1234
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1235
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1236
1237
            }

1238
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1239
1240
1241
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1242
1243
1244
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1245
        elif self.OUTPUT_TYPE == "generate_until":
1246
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1247
            result = results[0]
1248
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1249
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1250
                # it assumes that doc_to_target returns a number.
1251
1252
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1253
1254
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1255
                gold = list(gold)
Chris's avatar
Chris committed
1256
1257
1258
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1259

lintangsutawika's avatar
lintangsutawika committed
1260
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1261
1262
1263
1264
1265
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1266
1267
1268
1269
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1270
1271
1272
1273
1274
1275
1276
1277
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1278
                    else:
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1300
                else:
1301
                    try:
1302
                        result_score = self._metric_fn_list[metric](
1303
1304
                            references=[gold],
                            predictions=[result],
1305
                            **self._metric_fn_kwargs[metric],
1306
                        )
1307
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1308
                        result_score = self._metric_fn_list[metric]([gold, result])
1309
1310
1311
1312
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1313
        else:
lintangsutawika's avatar
lintangsutawika committed
1314
1315
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1316
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1317
            )
1318
1319
1320

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1321
    def aggregation(self) -> dict:
1322
1323
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1324
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1325
        return self._higher_is_better
1326

Baber Abbasi's avatar
Baber Abbasi committed
1327
1328
1329
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1330
1331
1332
1333

class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1334
    def doc_to_target(self, doc: dict) -> str:
1335
1336
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1337
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1338
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1339
1340
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1341
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1342
                doc=doc,
1343
                arguments=(ctx, " {}".format(choice)),
1344
                idx=i,
1345
1346
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1347
1348
            for i, choice in enumerate(doc["choices"])
        ]
1349

baberabb's avatar
baberabb committed
1350
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1351
1352
1353
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1365
    def higher_is_better(self) -> dict:
1366
1367
1368
1369
1370
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1371
    def aggregation(self) -> dict:
1372
1373
1374
1375
1376
1377
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1378
class PerplexityTask(Task):
1379
1380
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1381
    def has_training_docs(self) -> bool:
1382
1383
        return False

baberabb's avatar
baberabb committed
1384
    def fewshot_examples(self, k: int, rnd) -> List:
1385
1386
1387
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1388
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1389
1390
1391
1392
1393
1394
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1395
    def higher_is_better(self) -> dict:
1396
1397
1398
1399
1400
1401
1402
1403
1404
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1405
    def doc_to_text(self, doc) -> str:
1406
1407
1408
1409
1410
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1411
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1412
1413
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1414
1415
1416
1417
1418
1419
1420
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1421

baberabb's avatar
baberabb committed
1422
    def process_results(self, doc: dict, results: float) -> dict:
1423
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1424
1425
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1426
1427
1428
1429
1430
1431
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1432
    def aggregation(self) -> dict:
1433
1434
1435
1436
1437
1438
1439
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1440
    def count_bytes(cls, doc) -> int:
1441
1442
1443
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1444
    def count_words(cls, doc) -> int:
1445
1446
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))