task.py 39.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
lintangsutawika's avatar
lintangsutawika committed
46
    "winograd_schema",
47
48
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
67
    template_aliases: Union[str, list] = None
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
70
    doc_to_choice: Union[Callable, str] = None
71
    gold_alias: Union[Callable, str] = None
72
    use_prompt: str = None
73
    description: str = ""
74
75
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
76
    # runtime configuration options
77
    num_fewshot: int = 0
78
    # scoring options
79
80
    metric_list: str = None
    output_type: str = "greedy_until"
81
    generation_kwargs: dict = None
82
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
83
    filter_list: Union[str, list] = None
84
85
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
86

lintangsutawika's avatar
lintangsutawika committed
87
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
88

89
90
91
92
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
93
94
95
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
96

97
98
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
99

100
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
101
                self.gold_alias = self.template_aliases + self.gold_alias
102

Lintang Sutawika's avatar
Lintang Sutawika committed
103
104
105
106
107
108
109
110
111
112
113
114
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
120
                    "until": None
121
122
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
125
                    "do_sample": False,
                    "temperature": 0.0,
                }
126

haileyschoelkopf's avatar
haileyschoelkopf committed
127
128
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

129
130
131
    def __getitem__(self, item):
        return getattr(self, item)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
208
        self._config = TaskConfig(**config) if config else TaskConfig()
209
210
211

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
212
            for name, components in self._config.get(
213
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
214
            ):
215
216
217
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
218
219
220
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
247
248
249
250
251
252
253
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

291
292
293
294
295
296
297
298
299
300
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
301
            eval_logger.warning(
302
                "has_training_docs and has_validation_docs are False"
303
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
304
            )
305
306
            return self.test_docs()

307
308
309
310
311
312
313
314
315
316
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
317

318
319
    def doc_to_choice(self, doc):
        if self._config.doc_to_choice is None:
320
            return ast.literal_eval(
lintangsutawika's avatar
lintangsutawika committed
321
322
323
324
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
325
326
        elif type(self._config.doc_to_choice) == str:
            return utils.apply_template(self._config.doc_to_choice, doc)
327
        else:
328
            return self._config.doc_to_choice(doc)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

357
    def build_all_requests(self, limit=None, rank=None, world_size=None):
358
359
360
361
362
363
364
365
366
367
368
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
369
370
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
371
        ):
372
            # sample fewshot context #TODO: need to offset doc_id by rank now!
373
374
375
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
376

haileyschoelkopf's avatar
haileyschoelkopf committed
377
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
378
379
380
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
381
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
382
            )
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
408
            The number of times each instance in a dataset is inferred on. Defaults to 1,
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
444
445
446
447
448
449
450
451
452
453
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
474
475
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
476
        else:
lintangsutawika's avatar
lintangsutawika committed
477
478
479
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
480
481

        example = self.doc_to_text(doc)
482
483
484
485
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
486
487
488

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
489
490
491
492
493
494
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
495

496
    def dump_config(self):
497
        """Returns a dictionary representing the task's config.
498
499
500
501
502

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
503
        # (num_fewshot)
504
505
        return self._config.to_dict()

506
507
508

class ConfigurableTask(Task):

509
    VERSION = "Yaml"
510
    OUTPUT_TYPE = None
511
    CONFIG = None
512
513
514
515

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
516
        # Get pre-configured attributes
517
        self._config = self.CONFIG
518

519
520
        # Use new configurations if there was no preconfiguration
        if self._config is None:
521
            self._config = TaskConfig(**config)
522
523
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
524
            if config is not None:
525
                self._config.__dict__.update(config)
526

527
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
528
529
530
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
531
532

        if self._config.output_type is not None:
533
            assert self._config.output_type in ALL_OUTPUT_TYPES
534
535
            self.OUTPUT_TYPE = self._config.output_type

536
537
538
539
540
541
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

542
543
544
545
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
546

547
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
548
        if self._config.metric_list is None:
549
            # TODO: handle this in TaskConfig.__post_init__ ?
550
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
551
552
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
553
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
554
555
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
556
557
558
559
560
561
562
563
564
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
565
566
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
567

568
                if "aggregation" in metric_config:
569
                    agg_name = metric_config["aggregation"]
570
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
571
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
572
573
574
575
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
576
                else:
577
578

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
579
                    metric_agg = get_default_aggregation(metric_name)
580
                    eval_logger.warning(
581
582
583
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
584
                    )
585
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
586

587
588
589
590
591
592
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
593
594
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
595
                        f"higher_is_better={is_higher_better(metric_name)}"
596
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
597
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
598

599
        self.download(self._config.dataset_kwargs)
600
601
602
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
603
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
604
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
605
606
607
608
609
610
611
612
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
613
614
615
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
616
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
617
        else:
618
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
619
620

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
621
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
622
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
623
624
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
625
626
627
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
628
629
630
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
631
            )
632

633
634
635
636
        if self._config.template_aliases is not None:
            for key, alias in self._config.template_aliases:
                self.dataset.rename_column(key, alias)

637
638
639
640
641
642
643
644
645
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

646
        # Test One Doc
647
648
649
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)

650
        if self._config.output_type == "multiple_choice":
651
            if type(test_text) is list:
lintangsutawika's avatar
lintangsutawika committed
652
                self.multiple_input = len(test_text)
653
            elif type(test_text) is str:
lintangsutawika's avatar
lintangsutawika committed
654
655
                self.multiple_input = 0
                # test_choice = self.doc_choice(test_doc)
656
657
658

        # test_target = self.doc_to_target(test_doc)

659
660
661
662
663
664
665
666
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

697
    def fewshot_docs(self):
698
        if self._config.fewshot_split is not None:
699
            return self.dataset[self._config.fewshot_split]
700
701
702
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
703
                    f"Task '{self._config.task}': "
704
705
706
707
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
708

709
710
711
712
713
714
715
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

716
717
718
719
720
721
722
723
724
725
726
727
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
728
729
730

        if self.prompt is not None:
            doc_to_text = self.prompt
731
732
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
733

734
735
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
736
        elif callable(doc_to_text):
737
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
738
        # Used when applying a Promptsource template
739
        elif hasattr(doc_to_text, "apply"):
740
            return doc_to_text.apply(doc)[0]
741
        else:
742
            print(type(doc_to_text))
743
            raise TypeError
744
745

    def doc_to_target(self, doc):
746
747
748

        if self.prompt is not None:
            doc_to_target = self.prompt
749
750
751
        else:
            doc_to_target = self._config.doc_to_target

752
753
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
754
        elif callable(doc_to_target):
755
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
756
        # Used when applying a Promptsource template
757
758
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
759
760
        else:
            raise TypeError
761

762
    def gold_alias(self, doc):
763
764
765
766
767
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
768
        if self._config.gold_alias is not None:
769
770
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
771
            return self.doc_to_target(doc)
772
773
774
775
776
777
778
779
780
781

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

782
783
    def construct_requests(self, doc, ctx, **kwargs):

784
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
785
            arguments = (ctx, self.doc_to_target(doc))
786
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
787
            arguments = (self.doc_to_target(doc),)
788
        elif self.OUTPUT_TYPE == "multiple_choice":
789
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
lintangsutawika's avatar
lintangsutawika committed
790
791
            # TODO: any cleaner way to do this?
            if self.multiple_input > 0:
792
                choices = self.doc_to_text(doc)
793
                cont = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
794
                arguments = [(ctx, " {}".format(cont)) for ctx in choices]
795
            else:
796
                cont = self.create_choices(doc)
lintangsutawika's avatar
lintangsutawika committed
797
                arguments = [(ctx, " {}".format(cont)) for cont in choices]
798

799
            request_list = [
800
801
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
802
                    doc=doc,
803
                    arguments=arg,
804
                    idx=i,
805
806
                    **kwargs,
                )
807
                for i, arg in enumerate(arguments)
808
            ]
809
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
810
            if "acc_mutual_info" in self._metric_fn_list.keys():
811
812
813
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
814
                # here mutual info refers to calculating
815
816
817
818
819
820
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
821
                            doc=doc,
822
                            arguments=("", "{}".format(choice)),
823
824
825
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
826
                        for i, choice in enumerate(choices)
827
828
829
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
830

831
        elif self.OUTPUT_TYPE == "greedy_until":
832
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
833

834
835
836
837
        elif self.OUTPUT_TYPE == "winograd_schema":
            # similar to multiple_choice task type except each request contains
            # multiple differing contexts with the same continuation

838
            contexts = self.doc_to_choice(doc)
839
            choice = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
840

841
842
843
844
845
846
847
848
849
850
            request_list = [
                Instance(
                    request_type="loglikelihood",
                    doc=doc,
                    arguments=(context, " {}".format(choice)),
                    idx=i,
                    **kwargs,
                )
                for i, context in enumerate(contexts)
            ]
lintangsutawika's avatar
lintangsutawika committed
851

852
853
            return request_list

lintangsutawika's avatar
lintangsutawika committed
854
        return Instance(
lintangsutawika's avatar
lintangsutawika committed
855
856
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
857
858
859

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
860
861
862
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

863
        result_dict = {}
864
        use_metric = list(self._metric_fn_list.keys())
865
866
867
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
868
869
870
871
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
872
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
873
            (loglikelihood,) = results
874
875
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
876
            return {
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
892
            }
893
        elif self.OUTPUT_TYPE == "multiple_choice":
894
895

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
896

897
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
898
899
900
901
902
            if self.multiple_input:
                choices = [self.doc_to_text(doc)] * self.multiple_input
            else:
                choices = self.create_choices(doc)

903
904
            completion_len = np.array([float(len(i)) for i in choices])

905
906
            if (
                2 * len(choices) == len(lls)
907
                and "acc_mutual_info" in self._metric_fn_list.keys()
908
909
910
911
912
913
914
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
915

916
917
            pred_idx = np.argmax(lls)
            pred_idx_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
918

919
920
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
921
922
                pred = pred_idx
                pred_norm = pred_idx_norm
923
924
            else:
                gold = self.doc_to_target(doc)
925
926
927
                gold_idx = choices.index(gold)
                pred = choices[pred_idx]
                pred_norm = choices[pred_idx_norm]
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
928

929
930
            acc = 1.0 if pred == gold else 0.0
            acc_norm = 1.0 if pred_norm == gold else 0.0
931
932

            result_dict = {
933
                **({"acc": acc} if "acc" in use_metric else {}),
934
935
                **({"f1": (gold_idx, pred_idx)} if "f1" in use_metric else {}),
                **({"mcc": (gold_idx, pred_idx)} if "mcc" in use_metric else {}),
936
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
937
938
            }

939
            if "exact_match" in self._metric_fn_list.keys():
940
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
941
                is_greedy = is_greedy[gold]  # take value for the gold answer
942
943
                result_dict["exact_match"] = int(is_greedy)

944
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
945
946
947
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
948
949
950
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        elif self.OUTPUT_TYPE == "winograd_schema":

            lls, is_greedy = zip(*results)
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

            pred = np.argmax(lls)
            acc = 1.0 if np.argmax(lls) == gold else 0.0

            result_dict = {
                **({"acc": acc} if "acc" in use_metric else {}),
            }

966
967
968
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
969
                gold = self.gold_alias(doc)
970
971
972
            else:
                gold = self.doc_to_target(doc)

973
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
974
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
975
976
977
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
978
                )
979

lintangsutawika's avatar
lintangsutawika committed
980
                result_dict = {**result_dict, **_dict}
981
        else:
lintangsutawika's avatar
lintangsutawika committed
982
983
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
984
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', 'multiple_choice' or 'winograd_schema' ",
985
            )
986
987
988
989
990
991
992

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
993
        return self._higher_is_better
994
995
996
997
998
999
1000
1001
1002
1003


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
1004
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1005
1006
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1007
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1008
                doc=doc,
1009
                arguments=(ctx, " {}".format(choice)),
1010
                idx=i,
1011
1012
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1013
1014
            for i, choice in enumerate(doc["choices"])
        ]
1015
1016

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
1017
1018
1019
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1044
class PerplexityTask(Task):
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
1055
    def fewshot_context(self, doc, num_fewshot, rnd=None):
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1084
1085
1086
1087
1088
1089
1090
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1091
1092
1093

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1094
1095
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))