task.py 58.1 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

lintangsutawika's avatar
lintangsutawika committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
@dataclass
class GroupConfig(dict):
    group: Optional[Union[str, list]] = None
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


103
104
@dataclass
class TaskConfig(dict):
105
    # task naming/registry
106
107
108
109
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
lintangsutawika's avatar
lintangsutawika committed
110
    group_config: Optional[dict] = None
111
112
113
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
114
115
116
117
118
119
120
121
122
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
123
124
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
125
126
127
128
129
130
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
131
    description: str = ""
132
133
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
134
    fewshot_config: Optional[dict] = None
135
    # runtime configuration options
136
    num_fewshot: Optional[int] = None
137
    # scoring options
138
139
140
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
141
    repeats: int = 1
142
    filter_list: Optional[Union[str, list]] = None
143
    should_decontaminate: bool = False
144
145
146
147
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
148

Ethan Smith's avatar
Ethan Smith committed
149
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
150
        if self.generation_kwargs is not None:
151
            if self.output_type != "generate_until":
152
                eval_logger.warning(
153
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
154
155
156
157
158
159
160
161
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
162
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
163
        else:
164
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
165
166
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
167
168
169
170
171
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
172
173
                    "do_sample": False,
                }
174

175
176
177
    def __getitem__(self, item):
        return getattr(self, item)

178
179
180
    def __setitem__(self, item, value):
        return setattr(self, item, value)

181
    def to_dict(self, keep_callable: bool = False) -> dict:
182
183
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
184
        Used for dumping results alongside full task configuration
185

haileyschoelkopf's avatar
haileyschoelkopf committed
186
187
188
189
190
191
192
193
194
195
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
196
197
198
199
200
201
202
203
204
205
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
206
        return cfg_dict
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

224
225
226
227
228
229
230
231
232
233
234

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

235
    VERSION: Optional[Union[int, str]] = None
236

237
238
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
239
    DATASET_PATH: Optional[str] = None
240
241

    # The name of a subset within `DATASET_PATH`.
242
    DATASET_NAME: Optional[str] = None
243

244
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
245

246
247
    def __init__(
        self,
248
249
250
251
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
252
    ) -> None:
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
275
276
277
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
278

279
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
280

lintangsutawika's avatar
lintangsutawika committed
281
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
282

283
284
285
286
287
288
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
313
314
315
316
317
318
319
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
320

321
    @property
322
    def config(self) -> TaskConfig:
323
324
325
        """Returns the TaskConfig associated with this class."""
        return self._config

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

341
    def training_docs(self) -> Iterable:
342
343
344
345
346
347
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

348
    def validation_docs(self) -> Iterable:
349
350
351
352
353
354
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

355
    def test_docs(self) -> Iterable:
356
357
358
359
360
361
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

362
    def fewshot_docs(self) -> Iterable:
363
364
365
366
367
368
369
370
371
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
372
            eval_logger.warning(
373
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
374
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
375
            )
376
377
            return self.test_docs()

378
    def _process_doc(self, doc: dict) -> dict:
379
380
381
382
383
384
385
386
387
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
388

389
    @property
390
    def instances(self) -> List[Instance]:
391
392
393
394
395
396
397
398
399
400
401
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

402
403
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
404
405
406
407
408
409
410
411
412
413
414
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

415
416
    def build_all_requests(
        self,
417
        *,
418
419
420
421
422
423
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
424
        """Build a set of Instances for a task, and store them in task.instances"""
425
426
427
428

        # used with caching
        og_limit = limit

429
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
445
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
446

447
        instances = []
448
449
450
451
452
453
454
455
456
457

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
458
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
459
460
461
462
463
464
465
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
466
        ):
467
            # sample fewshot context #TODO: need to offset doc_id by rank now!
468
            fewshot_ctx = self.fewshot_context(
469
                doc,
470
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
471
            )
472

473
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
474
475
476
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
477
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
478
            )
479
480
481
482

            if not isinstance(inst, list):
                inst = [inst]

483
484
485
486
487
488
489
490
491
492
493
494
495
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
496

497
498
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
499

500
501
502
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
519
            The number of times each instance in a dataset is inferred on. Defaults to 1,
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

555
556
557
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
558
559
560
561
562
563
564
565
566
567
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

568
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
569
    def fewshot_context(
570
571
572
573
574
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
575
    ):
576
577
578
579
580
581
582
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
583
584
585
586
587
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
588
589
590
        :returns: str
            The fewshot context.
        """
591
592
593
594
        if rnd is None:
            raise ValueError(
                "A `random.Random` generator argument must be provided to `rnd`"
            )
lintangsutawika's avatar
lintangsutawika committed
595

596
        description = description if description else ""
597
598

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
599
            labeled_examples = ""
600
        else:
lintangsutawika's avatar
lintangsutawika committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
625
            )
626
627

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
628
        return description + labeled_examples + example
629

630
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
631
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
632
633
        if hasattr(self, "_filters"):
            for f in self._filters:
634
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
635
636
637
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
638

baberabb's avatar
baberabb committed
639
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
640
        """Returns the config as a dictionary."""
641
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
642
        # (num_fewshot)
643
        return self.config.to_dict()
644

Baber Abbasi's avatar
Baber Abbasi committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

685
686
687
688
689
690
691
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
692
693
694
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
695
696
697
698
699
700
701
702
703
704
705
706
707

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

708
709

class ConfigurableTask(Task):
710
    VERSION = "Yaml"
711
    OUTPUT_TYPE = None
712
    CONFIG = None
713
714

    def __init__(
715
716
717
718
719
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
720
    ) -> None:  # TODO no super() call here
721
        # Get pre-configured attributes
722
        self._config = self.CONFIG
723

724
        # Use new configurations if there was no preconfiguration
725
        if self.config is None:
726
            self._config = TaskConfig(**config)
727
728
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
729
            if config is not None:
730
                self._config.__dict__.update(config)
731

732
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
733
734
735
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
736

737
738
739
740
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

741
        if self.config.output_type is not None:
742
743
744
745
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
746
            self.OUTPUT_TYPE = self.config.output_type
747

748
749
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
750

751
752
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
753

754
755
756
757
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
758

759
        if self.config.metric_list is None:
760
            # TODO: handle this in TaskConfig.__post_init__ ?
761
762
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

763
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
764
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
765
                self._metric_fn_kwargs[metric_name] = {}
766
767
768
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
769
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
770
        else:
771
            for metric_config in self.config.metric_list:
772
773
774
775
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
776
777
778
779
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
780
781
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
782
                }
Chris's avatar
Chris committed
783
784
785
786
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
787

788
                if self.config.process_results is not None:
789
790
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
791
792
793
794
795
796
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
797
798
799
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
800
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
801

802
                if "aggregation" in metric_config:
803
                    agg_name = metric_config["aggregation"]
804
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
805
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
806
                    elif callable(agg_name):  # noqa: E721
807
808
809
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
810
                else:
811
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
812
                    metric_agg = get_metric_aggregation(metric_name)
813
                    eval_logger.warning(
814
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
815
816
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
817
                    )
818
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
819

820
821
822
823
824
825
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
826
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
827
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
828
                        f"higher_is_better={is_higher_better(metric_name)}"
829
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
830
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
831

832
        self.download(self.config.dataset_kwargs)
833
834
835
        self._training_docs = None
        self._fewshot_docs = None

836
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
837
            self._filters = []
838
            for filter_config in self.config.filter_list:
839
840
841
842
843
844
845
846
847
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
848
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
849
        else:
850
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
851

852
853
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
854
            self.prompt = get_prompt(
855
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
856
            )
857
858
859
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
860
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
861
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
862
863
864
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
865
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
866

867
        self.task_docs = self.eval_docs
868

869
        # Test One Doc
870
        self.features = list(self.task_docs.features.keys())
871
872
        self.multiple_input = 0
        self.multiple_target = 0
873
        test_doc = self.task_docs[0]
874
        test_text = self.doc_to_text(test_doc)
875
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
876

877
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
878
            test_choice = self.doc_to_choice(test_doc)
879
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
880
                eval_logger.error("doc_to_choice must return list")
881
882
            else:
                num_choice = len(test_choice)
883

884
            if isinstance(test_text, int):
885
                self.multiple_input = num_choice
886
887
        else:
            test_choice = None
888

889
        if isinstance(test_target, list):
890
            self.multiple_target = len(test_target)
891
        else:
892
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
893
                test_target = test_choice[test_target]
894
            else:
lintangsutawika's avatar
lintangsutawika committed
895
                test_target = str(test_target)
896

897
898
899
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
900
            check_choices = [test_target]
901
902
903
904
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
905
906
                    True
                    if self.config.target_delimiter.rstrip()
907
                    != self.config.target_delimiter
908
                    else False
909
                )
910

911
                if delimiter_has_whitespace and choice_has_whitespace:
912
913
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
914
915
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
916
                    eval_logger.debug(
917
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
918
919
                    )

920
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
921
922
923
924
925
926
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
927
    def has_training_docs(self) -> bool:
928
        if self.config.training_split is not None:
929
930
931
932
            return True
        else:
            return False

baberabb's avatar
baberabb committed
933
    def has_validation_docs(self) -> bool:
934
        if self.config.validation_split is not None:
935
936
937
938
            return True
        else:
            return False

baberabb's avatar
baberabb committed
939
    def has_test_docs(self) -> bool:
940
        if self.config.test_split is not None:
941
942
943
944
            return True
        else:
            return False

baberabb's avatar
baberabb committed
945
    def training_docs(self) -> datasets.Dataset:
946
        if self.has_training_docs():
947
948
949
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
950
                )
951
            return self.dataset[self.config.training_split]
952

baberabb's avatar
baberabb committed
953
    def validation_docs(self) -> datasets.Dataset:
954
        if self.has_validation_docs():
955
956
957
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
958
                )
959
            return self.dataset[self.config.validation_split]
960

baberabb's avatar
baberabb committed
961
    def test_docs(self) -> datasets.Dataset:
962
        if self.has_test_docs():
963
964
965
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
966

967
    def fewshot_docs(self):
968
        if self.config.fewshot_split is not None:
969
970
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
971
            return self.dataset[self.config.fewshot_split]
972
        else:
973
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
974
                eval_logger.warning(
975
                    f"Task '{self.config.task}': "
976
977
978
979
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
980

lintangsutawika's avatar
lintangsutawika committed
981
    @utils.positional_deprecated
982
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
983
984
985
986
987
988
989
990
991
992
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
993
994
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
995
996
997

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
998
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
999
        else:
1000
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1001
1002

        example = self.doc_to_text(doc)
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1016

1017
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1018
        """Iterates over FilterEnsembles and applies them to instances"""
1019
1020
        if hasattr(self, "_filters"):
            for f in self._filters:
1021
                f.apply(self._instances)
1022
1023
1024
1025
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1026
    def should_decontaminate(self):
1027
        return self.config.should_decontaminate
1028
1029

    def doc_to_decontamination_query(self, doc):
1030
        if self.config.should_decontaminate:
1031
1032
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1033
            else:
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1045

1046
    def _process_doc(self, doc: dict) -> dict:
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1058
1059
        if self.prompt is not None:
            doc_to_text = self.prompt
1060
        else:
1061
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1062

1063
        if isinstance(doc_to_text, int):
1064
            return doc_to_text
1065
        elif isinstance(doc_to_text, str):
1066
            if doc_to_text in self.features:
1067
                # if self.config.doc_to_choice is not None:
1068
1069
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1070
1071
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1072
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1073
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1074
1075
1076
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1077
        elif callable(doc_to_text):
1078
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1079
        # Used when applying a Promptsource template
1080
        elif hasattr(doc_to_text, "apply"):
1081
1082
1083
1084
1085
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1086
                return self.config.fewshot_delimiter
1087
        else:
1088
            print(type(doc_to_text))
1089
            raise TypeError
1090

1091
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1092
1093
        if self.prompt is not None:
            doc_to_target = self.prompt
1094
        else:
1095
            doc_to_target = self.config.doc_to_target
1096

1097
        if isinstance(doc_to_target, int):
1098
            return doc_to_target
1099
        elif isinstance(doc_to_target, str):
1100
            if doc_to_target in self.features:
1101
                # if self.config.doc_to_choice is not None:
1102
1103
1104
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1105
            else:
lintangsutawika's avatar
lintangsutawika committed
1106
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1107
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1108
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1109
1110
1111
1112
1113
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1114
1115
1116
1117
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1118
1119
                else:
                    return target_string
1120
        elif isinstance(doc_to_target, list):
1121
            return doc_to_target
1122
        elif callable(doc_to_target):
1123
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1124
        # Used when applying a Promptsource template
1125
        elif hasattr(doc_to_target, "apply"):
1126
            applied_prompt = doc_to_target.apply(doc)
1127
1128
1129
1130
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1131
                return self.config.fewshot_delimiter
1132
1133
        else:
            raise TypeError
1134

baberabb's avatar
baberabb committed
1135
    def doc_to_choice(self, doc: Any) -> List[str]:
1136
1137
        if self.prompt is not None:
            doc_to_choice = self.prompt
1138
        elif self.config.doc_to_choice is None:
1139
1140
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1141
            doc_to_choice = self.config.doc_to_choice
1142

1143
        if isinstance(doc_to_choice, str):
1144
1145
1146
1147
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1148
        elif isinstance(doc_to_choice, list):
1149
            return doc_to_choice
1150
        elif isinstance(doc_to_choice, dict):
1151
1152
1153
1154
1155
1156
1157
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1158

baberabb's avatar
baberabb committed
1159
1160
1161
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1162
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1163
            arguments = (ctx, self.doc_to_target(doc))
1164
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1165
            arguments = (self.doc_to_target(doc),)
1166
        elif self.OUTPUT_TYPE == "multiple_choice":
1167
            choices = self.doc_to_choice(doc)
1168
            target_delimiter = self.config.target_delimiter
1169
1170
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1171
                cont = self.doc_to_target(doc)
1172
1173
1174
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1175
            else:
1176
                # Otherwise they are placed in the continuation
1177
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1178

1179
            request_list = [
1180
1181
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1182
                    doc=doc,
1183
                    arguments=arg,
1184
                    idx=i,
1185
1186
                    **kwargs,
                )
1187
                for i, arg in enumerate(arguments)
1188
            ]
1189
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1190
            if "acc_mutual_info" in self._metric_fn_list.keys():
1191
1192
1193
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1194
                # here mutual info refers to calculating
1195
1196
1197
1198
1199
1200
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1201
                            doc=doc,
1202
                            arguments=("", "{}".format(choice)),
1203
1204
1205
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1206
                        for i, choice in enumerate(choices)
1207
1208
1209
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1210

1211
        elif self.OUTPUT_TYPE == "generate_until":
1212
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1213
1214

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1215
1216
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1217
1218

    def process_results(self, doc, results):
1219
1220
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1221

1222
        result_dict = {}
1223
        use_metric = list(self._metric_fn_list.keys())
1224
1225
1226
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1227
1228
1229
1230
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1231
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1232
            (loglikelihood,) = results
1233
1234
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1235
            return {
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1251
            }
1252
        elif self.OUTPUT_TYPE == "multiple_choice":
1253
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1254

1255
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1256
            choices = self.doc_to_choice(doc)
1257
1258
            completion_len = np.array([float(len(i)) for i in choices])

1259
1260
            if (
                2 * len(choices) == len(lls)
1261
                and "acc_mutual_info" in self._metric_fn_list.keys()
1262
1263
1264
1265
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1266
1267
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1268
1269
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1270

1271
1272
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1273

1274
1275
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1276
            else:
1277
                gold = self.doc_to_target(doc)
1278
1279

            gold_index_error = False
1280
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1281
1282
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1283
1284
                    gold_index_error = True
            else:
1285
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1286
                    gold = gold if gold < len(choices) else -100
1287
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1288
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1289

Lintang Sutawika's avatar
Lintang Sutawika committed
1290
                if gold == -100:
1291
1292
1293
1294
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1295
                    f"Label index was not in within range of available choices,"
1296
1297
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1298

1299
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1300
1301
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1302
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1303
1304
1305
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1306
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1307
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1308

Lintang Sutawika's avatar
Lintang Sutawika committed
1309
1310
1311
1312
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1313
            result_dict = {
1314
                **({"acc": acc} if "acc" in use_metric else {}),
1315
1316
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1317
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1318
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1319
1320
1321
1322
1323
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1324
1325
            }

1326
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1327
1328
1329
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1330
1331
1332
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1333
        elif self.OUTPUT_TYPE == "generate_until":
1334
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1335
            result = results[0]
1336
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1337
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1338
                # it assumes that doc_to_target returns a number.
1339
1340
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1341
1342
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1343
                gold = list(gold)
Chris's avatar
Chris committed
1344
1345
1346
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1347

lintangsutawika's avatar
lintangsutawika committed
1348
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1349
1350
1351
1352
1353
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1354
1355
1356
1357
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1358
1359
1360
1361
1362
1363
1364
1365
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1366
                    else:
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1388
                else:
1389
                    try:
1390
                        result_score = self._metric_fn_list[metric](
1391
1392
                            references=[gold],
                            predictions=[result],
1393
                            **self._metric_fn_kwargs[metric],
1394
                        )
1395
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1396
                        result_score = self._metric_fn_list[metric]([gold, result])
1397
1398
1399
1400
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1401
        else:
lintangsutawika's avatar
lintangsutawika committed
1402
1403
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1404
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1405
            )
1406
1407
1408

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1409
    def aggregation(self) -> dict:
1410
1411
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1412
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1413
        return self._higher_is_better
1414

Baber Abbasi's avatar
Baber Abbasi committed
1415
1416
1417
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1418
1419
1420
1421
1422
1423
1424
1425
1426
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1427
1428

class MultipleChoiceTask(Task):
1429
    OUTPUT_TYPE = "loglikelihood"
1430

baberabb's avatar
baberabb committed
1431
    def doc_to_target(self, doc: dict) -> str:
1432
1433
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1434
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1435
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1436
1437
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1438
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1439
                doc=doc,
1440
                arguments=(ctx, " {}".format(choice)),
1441
                idx=i,
1442
1443
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1444
1445
            for i, choice in enumerate(doc["choices"])
        ]
1446

1447
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1448
1449
1450
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1462
    def higher_is_better(self) -> dict:
1463
1464
1465
1466
1467
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1468
    def aggregation(self) -> dict:
1469
1470
1471
1472
1473
1474
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1475
class PerplexityTask(Task):
1476
1477
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1478
    def has_training_docs(self) -> bool:
1479
1480
        return False

baberabb's avatar
baberabb committed
1481
    def fewshot_examples(self, k: int, rnd) -> List:
1482
1483
1484
1485
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1486
1487
        return []

baberabb's avatar
baberabb committed
1488
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1489
1490
1491
1492
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1493
1494
1495

        return ""

baberabb's avatar
baberabb committed
1496
    def higher_is_better(self) -> dict:
1497
1498
1499
1500
1501
1502
1503
1504
1505
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1506
    def doc_to_text(self, doc) -> str:
1507
1508
1509
1510
1511
        return ""

    def doc_to_target(self, doc):
        return doc

1512
1513
1514
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1515

lintangsutawika's avatar
lintangsutawika committed
1516
1517
1518
1519
1520
1521
1522
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1523

1524
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1525
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1526
1527
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1528
1529
1530
1531
1532
1533
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1534
    def aggregation(self) -> dict:
1535
1536
1537
1538
1539
1540
1541
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1542
    def count_bytes(cls, doc) -> int:
1543
1544
1545
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1546
    def count_words(cls, doc) -> int:
1547
1548
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))