task.py 58.7 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

lintangsutawika's avatar
lintangsutawika committed
54
55
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
56
57
58
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
lintangsutawika's avatar
lintangsutawika committed
59
60
61
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
62
    metric_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
    
    @property
    def group_alias(self):
        return self._config.group_alias
    
    @property
    def config(self):
        return self._config.to_dict()

    def __repr__(self):
        return (
            f"ConfigurableGroup(group={self.group},"
            f"group_alias={self.group_alias})"
        )

131
132
@dataclass
class TaskConfig(dict):
133
    # task naming/registry
134
135
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
136
    tags: Optional[Union[str, list]] = None
137
138
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
139
140
141
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
142
143
144
145
146
147
148
149
150
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
151
152
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
153
154
155
156
157
158
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
159
    description: str = ""
160
161
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
162
    fewshot_config: Optional[dict] = None
163
    # runtime configuration options
164
    num_fewshot: Optional[int] = None
165
    # scoring options
166
167
168
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
169
    repeats: int = 1
170
    filter_list: Optional[Union[str, list]] = None
171
    should_decontaminate: bool = False
172
173
174
175
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
176

Ethan Smith's avatar
Ethan Smith committed
177
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
178
        if self.generation_kwargs is not None:
179
            if self.output_type != "generate_until":
180
                eval_logger.warning(
181
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
182
183
184
185
186
187
188
189
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
190
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
191
        else:
192
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
193
194
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
195
196
197
198
199
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
200
201
                    "do_sample": False,
                }
202

203
204
205
    def __getitem__(self, item):
        return getattr(self, item)

206
207
208
    def __setitem__(self, item, value):
        return setattr(self, item, value)

209
    def to_dict(self, keep_callable: bool = False) -> dict:
210
211
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
212
        Used for dumping results alongside full task configuration
213

haileyschoelkopf's avatar
haileyschoelkopf committed
214
215
216
217
218
219
220
221
222
223
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
224
225
226
227
228
229
230
231
232
233
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
234
        return cfg_dict
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

252
253
254
255
256
257
258
259
260
261
262

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

263
    VERSION: Optional[Union[int, str]] = None
264

265
266
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
267
    DATASET_PATH: Optional[str] = None
268
269

    # The name of a subset within `DATASET_PATH`.
270
    DATASET_NAME: Optional[str] = None
271

272
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
273

274
275
    def __init__(
        self,
276
277
278
279
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
280
    ) -> None:
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
303
304
305
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
306

307
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
308

lintangsutawika's avatar
lintangsutawika committed
309
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
310

311
312
313
314
315
316
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
341
342
343
344
345
346
347
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
348

349
    @property
350
    def config(self) -> TaskConfig:
351
352
353
        """Returns the TaskConfig associated with this class."""
        return self._config

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

369
    def training_docs(self) -> Iterable:
370
371
372
373
374
375
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

376
    def validation_docs(self) -> Iterable:
377
378
379
380
381
382
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

383
    def test_docs(self) -> Iterable:
384
385
386
387
388
389
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

390
    def fewshot_docs(self) -> Iterable:
391
392
393
394
395
396
397
398
399
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
400
            eval_logger.warning(
401
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
402
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
403
            )
404
405
            return self.test_docs()

406
    def _process_doc(self, doc: dict) -> dict:
407
408
409
410
411
412
413
414
415
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
416

417
    @property
418
    def instances(self) -> List[Instance]:
419
420
421
422
423
424
425
426
427
428
429
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

430
431
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
432
433
434
435
436
437
438
439
440
441
442
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

443
444
    def build_all_requests(
        self,
445
        *,
446
447
448
449
450
451
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
452
        """Build a set of Instances for a task, and store them in task.instances"""
453
454
455
456

        # used with caching
        og_limit = limit

457
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
473
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
474

475
        instances = []
476
477
478
479
480
481
482
483
484
485

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
486
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
487
488
489
490
491
492
493
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
494
        ):
495
            # sample fewshot context #TODO: need to offset doc_id by rank now!
496
            fewshot_ctx = self.fewshot_context(
497
                doc,
498
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
499
            )
500

501
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
502
503
504
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
505
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
506
            )
507
508
509
510

            if not isinstance(inst, list):
                inst = [inst]

511
512
513
514
515
516
517
518
519
520
521
522
523
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
524

525
526
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
527

528
529
530
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
547
            The number of times each instance in a dataset is inferred on. Defaults to 1,
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

583
584
585
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
586
587
588
589
590
591
592
593
594
595
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

596
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
597
    def fewshot_context(
598
599
600
601
602
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
603
    ):
604
605
606
607
608
609
610
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
611
612
613
614
615
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
616
617
618
        :returns: str
            The fewshot context.
        """
619
620
621
622
        if rnd is None:
            raise ValueError(
                "A `random.Random` generator argument must be provided to `rnd`"
            )
lintangsutawika's avatar
lintangsutawika committed
623

624
        description = description if description else ""
625
626

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
627
            labeled_examples = ""
628
        else:
lintangsutawika's avatar
lintangsutawika committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
653
            )
654
655

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
656
        return description + labeled_examples + example
657

658
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
659
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
660
661
        if hasattr(self, "_filters"):
            for f in self._filters:
662
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
663
664
665
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
666

baberabb's avatar
baberabb committed
667
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
668
        """Returns the config as a dictionary."""
669
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
670
        # (num_fewshot)
671
        return self.config.to_dict()
672

Baber Abbasi's avatar
Baber Abbasi committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

713
714
715
716
717
718
719
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
720
721
722
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
723
724
725
726
727
728
729
730
731
732
733
734
735

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

736
737

class ConfigurableTask(Task):
738
    VERSION = "Yaml"
739
    OUTPUT_TYPE = None
740
    CONFIG = None
741
742

    def __init__(
743
744
745
746
747
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
748
    ) -> None:  # TODO no super() call here
749
        # Get pre-configured attributes
750
        self._config = self.CONFIG
751

752
        # Use new configurations if there was no preconfiguration
753
        if self.config is None:
754
            self._config = TaskConfig(**config)
755
756
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
757
            if config is not None:
758
                self._config.__dict__.update(config)
759

760
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
761
762
763
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
764

765
766
767
768
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

769
        if self.config.output_type is not None:
770
771
772
773
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
774
            self.OUTPUT_TYPE = self.config.output_type
775

776
777
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
778

779
780
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
781

782
783
784
785
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
786

787
        if self.config.metric_list is None:
788
            # TODO: handle this in TaskConfig.__post_init__ ?
789
790
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

791
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
792
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
793
                self._metric_fn_kwargs[metric_name] = {}
794
795
796
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
797
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
798
        else:
799
            for metric_config in self.config.metric_list:
800
801
802
803
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
804
805
806
807
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
808
809
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
810
                }
Chris's avatar
Chris committed
811
812
813
814
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
815

816
                if self.config.process_results is not None:
817
818
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
819
820
821
822
823
824
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
825
826
827
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
828
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
829

830
                if "aggregation" in metric_config:
831
                    agg_name = metric_config["aggregation"]
832
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
833
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
834
                    elif callable(agg_name):  # noqa: E721
835
836
837
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
838
                else:
839
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
840
                    metric_agg = get_metric_aggregation(metric_name)
841
                    eval_logger.warning(
842
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
843
844
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
845
                    )
846
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
847

848
849
850
851
852
853
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
854
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
855
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
856
                        f"higher_is_better={is_higher_better(metric_name)}"
857
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
858
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
859

860
        self.download(self.config.dataset_kwargs)
861
862
863
        self._training_docs = None
        self._fewshot_docs = None

864
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
865
            self._filters = []
866
            for filter_config in self.config.filter_list:
867
868
869
870
871
872
873
874
875
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
876
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
877
        else:
878
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
879

880
881
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
882
            self.prompt = get_prompt(
883
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
884
            )
885
886
887
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
888
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
889
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
890
891
892
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
893
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
894

895
        self.task_docs = self.eval_docs
896

897
        # Test One Doc
898
        self.features = list(self.task_docs.features.keys())
899
900
        self.multiple_input = 0
        self.multiple_target = 0
901
        test_doc = self.task_docs[0]
902
        test_text = self.doc_to_text(test_doc)
903
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
904

905
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
906
            test_choice = self.doc_to_choice(test_doc)
907
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
908
                eval_logger.error("doc_to_choice must return list")
909
910
            else:
                num_choice = len(test_choice)
911

912
            if isinstance(test_text, int):
913
                self.multiple_input = num_choice
914
915
        else:
            test_choice = None
916

917
        if isinstance(test_target, list):
918
            self.multiple_target = len(test_target)
919
        else:
920
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
921
                test_target = test_choice[test_target]
922
            else:
lintangsutawika's avatar
lintangsutawika committed
923
                test_target = str(test_target)
924

925
926
927
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
928
            check_choices = [test_target]
929
930
931
932
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
933
934
                    True
                    if self.config.target_delimiter.rstrip()
935
                    != self.config.target_delimiter
936
                    else False
937
                )
938

939
                if delimiter_has_whitespace and choice_has_whitespace:
940
941
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
942
943
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
944
                    eval_logger.debug(
945
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
946
947
                    )

948
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
949
950
951
952
953
954
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
955
    def has_training_docs(self) -> bool:
956
        if self.config.training_split is not None:
957
958
959
960
            return True
        else:
            return False

baberabb's avatar
baberabb committed
961
    def has_validation_docs(self) -> bool:
962
        if self.config.validation_split is not None:
963
964
965
966
            return True
        else:
            return False

baberabb's avatar
baberabb committed
967
    def has_test_docs(self) -> bool:
968
        if self.config.test_split is not None:
969
970
971
972
            return True
        else:
            return False

baberabb's avatar
baberabb committed
973
    def training_docs(self) -> datasets.Dataset:
974
        if self.has_training_docs():
975
976
977
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
978
                )
979
            return self.dataset[self.config.training_split]
980

baberabb's avatar
baberabb committed
981
    def validation_docs(self) -> datasets.Dataset:
982
        if self.has_validation_docs():
983
984
985
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
986
                )
987
            return self.dataset[self.config.validation_split]
988

baberabb's avatar
baberabb committed
989
    def test_docs(self) -> datasets.Dataset:
990
        if self.has_test_docs():
991
992
993
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
994

995
    def fewshot_docs(self):
996
        if self.config.fewshot_split is not None:
997
998
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
999
            return self.dataset[self.config.fewshot_split]
1000
        else:
1001
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1002
                eval_logger.warning(
1003
                    f"Task '{self.config.task}': "
1004
1005
1006
1007
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1008

lintangsutawika's avatar
lintangsutawika committed
1009
    @utils.positional_deprecated
1010
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
1021
1022
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1023
1024
1025

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
1026
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
1027
        else:
1028
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1029
1030

        example = self.doc_to_text(doc)
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1044

1045
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1046
        """Iterates over FilterEnsembles and applies them to instances"""
1047
1048
        if hasattr(self, "_filters"):
            for f in self._filters:
1049
                f.apply(self._instances)
1050
1051
1052
1053
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1054
    def should_decontaminate(self):
1055
        return self.config.should_decontaminate
1056
1057

    def doc_to_decontamination_query(self, doc):
1058
        if self.config.should_decontaminate:
1059
1060
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1061
            else:
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1073

1074
    def _process_doc(self, doc: dict) -> dict:
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1086
1087
        if self.prompt is not None:
            doc_to_text = self.prompt
1088
        else:
1089
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1090

1091
        if isinstance(doc_to_text, int):
1092
            return doc_to_text
1093
        elif isinstance(doc_to_text, str):
1094
            if doc_to_text in self.features:
1095
                # if self.config.doc_to_choice is not None:
1096
1097
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1098
1099
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1100
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1101
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1102
1103
1104
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1105
        elif callable(doc_to_text):
1106
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1107
        # Used when applying a Promptsource template
1108
        elif hasattr(doc_to_text, "apply"):
1109
1110
1111
1112
1113
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1114
                return self.config.fewshot_delimiter
1115
        else:
1116
            print(type(doc_to_text))
1117
            raise TypeError
1118

1119
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1120
1121
        if self.prompt is not None:
            doc_to_target = self.prompt
1122
        else:
1123
            doc_to_target = self.config.doc_to_target
1124

1125
        if isinstance(doc_to_target, int):
1126
            return doc_to_target
1127
        elif isinstance(doc_to_target, str):
1128
            if doc_to_target in self.features:
1129
                # if self.config.doc_to_choice is not None:
1130
1131
1132
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1133
            else:
lintangsutawika's avatar
lintangsutawika committed
1134
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1135
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1136
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1137
1138
1139
1140
1141
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1142
1143
1144
1145
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1146
1147
                else:
                    return target_string
1148
        elif isinstance(doc_to_target, list):
1149
            return doc_to_target
1150
        elif callable(doc_to_target):
1151
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1152
        # Used when applying a Promptsource template
1153
        elif hasattr(doc_to_target, "apply"):
1154
            applied_prompt = doc_to_target.apply(doc)
1155
1156
1157
1158
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1159
                return self.config.fewshot_delimiter
1160
1161
        else:
            raise TypeError
1162

baberabb's avatar
baberabb committed
1163
    def doc_to_choice(self, doc: Any) -> List[str]:
1164
1165
        if self.prompt is not None:
            doc_to_choice = self.prompt
1166
        elif self.config.doc_to_choice is None:
1167
1168
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1169
            doc_to_choice = self.config.doc_to_choice
1170

1171
        if isinstance(doc_to_choice, str):
1172
1173
1174
1175
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1176
        elif isinstance(doc_to_choice, list):
1177
            return doc_to_choice
1178
        elif isinstance(doc_to_choice, dict):
1179
1180
1181
1182
1183
1184
1185
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1186

baberabb's avatar
baberabb committed
1187
1188
1189
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1190
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1191
            arguments = (ctx, self.doc_to_target(doc))
1192
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1193
            arguments = (self.doc_to_target(doc),)
1194
        elif self.OUTPUT_TYPE == "multiple_choice":
1195
            choices = self.doc_to_choice(doc)
1196
            target_delimiter = self.config.target_delimiter
1197
1198
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1199
                cont = self.doc_to_target(doc)
1200
1201
1202
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1203
            else:
1204
                # Otherwise they are placed in the continuation
1205
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1206

1207
            request_list = [
1208
1209
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1210
                    doc=doc,
1211
                    arguments=arg,
1212
                    idx=i,
1213
1214
                    **kwargs,
                )
1215
                for i, arg in enumerate(arguments)
1216
            ]
1217
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1218
            if "acc_mutual_info" in self._metric_fn_list.keys():
1219
1220
1221
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1222
                # here mutual info refers to calculating
1223
1224
1225
1226
1227
1228
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1229
                            doc=doc,
1230
                            arguments=("", "{}".format(choice)),
1231
1232
1233
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1234
                        for i, choice in enumerate(choices)
1235
1236
1237
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1238

1239
        elif self.OUTPUT_TYPE == "generate_until":
1240
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1241
1242

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1243
1244
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1245
1246

    def process_results(self, doc, results):
1247
1248
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1249

1250
        result_dict = {}
1251
        use_metric = list(self._metric_fn_list.keys())
1252
1253
1254
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1255
1256
1257
1258
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1259
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1260
            (loglikelihood,) = results
1261
1262
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1263
            return {
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1279
            }
1280
        elif self.OUTPUT_TYPE == "multiple_choice":
1281
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1282

1283
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1284
            choices = self.doc_to_choice(doc)
1285
1286
            completion_len = np.array([float(len(i)) for i in choices])

1287
1288
            if (
                2 * len(choices) == len(lls)
1289
                and "acc_mutual_info" in self._metric_fn_list.keys()
1290
1291
1292
1293
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1294
1295
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1296
1297
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1298

1299
1300
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1301

1302
1303
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1304
            else:
1305
                gold = self.doc_to_target(doc)
1306
1307

            gold_index_error = False
1308
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1309
1310
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1311
1312
                    gold_index_error = True
            else:
1313
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1314
                    gold = gold if gold < len(choices) else -100
1315
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1316
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1317

Lintang Sutawika's avatar
Lintang Sutawika committed
1318
                if gold == -100:
1319
1320
1321
1322
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1323
                    f"Label index was not in within range of available choices,"
1324
1325
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1326

1327
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1328
1329
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1330
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1331
1332
1333
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1334
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1335
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1336

Lintang Sutawika's avatar
Lintang Sutawika committed
1337
1338
1339
1340
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1341
            result_dict = {
1342
                **({"acc": acc} if "acc" in use_metric else {}),
1343
1344
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1345
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1346
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1347
1348
1349
1350
1351
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1352
1353
            }

1354
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1355
1356
1357
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1358
1359
1360
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1361
        elif self.OUTPUT_TYPE == "generate_until":
1362
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1363
            result = results[0]
1364
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1365
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1366
                # it assumes that doc_to_target returns a number.
1367
1368
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1369
1370
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1371
                gold = list(gold)
Chris's avatar
Chris committed
1372
1373
1374
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1375

lintangsutawika's avatar
lintangsutawika committed
1376
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1377
1378
1379
1380
1381
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1382
1383
1384
1385
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1386
1387
1388
1389
1390
1391
1392
1393
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1394
                    else:
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1416
                else:
1417
                    try:
1418
                        result_score = self._metric_fn_list[metric](
1419
1420
                            references=[gold],
                            predictions=[result],
1421
                            **self._metric_fn_kwargs[metric],
1422
                        )
1423
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1424
                        result_score = self._metric_fn_list[metric]([gold, result])
1425
1426
1427
1428
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1429
        else:
lintangsutawika's avatar
lintangsutawika committed
1430
1431
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1432
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1433
            )
1434
1435
1436

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1437
    def aggregation(self) -> dict:
1438
1439
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1440
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1441
        return self._higher_is_better
1442

Baber Abbasi's avatar
Baber Abbasi committed
1443
1444
1445
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1446
1447
1448
1449
1450
1451
1452
1453
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1454
1455

class MultipleChoiceTask(Task):
1456
    OUTPUT_TYPE = "loglikelihood"
1457

baberabb's avatar
baberabb committed
1458
    def doc_to_target(self, doc: dict) -> str:
1459
1460
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1461
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1462
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1463
1464
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1465
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1466
                doc=doc,
1467
                arguments=(ctx, " {}".format(choice)),
1468
                idx=i,
1469
1470
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1471
1472
            for i, choice in enumerate(doc["choices"])
        ]
1473

1474
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1475
1476
1477
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1489
    def higher_is_better(self) -> dict:
1490
1491
1492
1493
1494
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1495
    def aggregation(self) -> dict:
1496
1497
1498
1499
1500
1501
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1502
class PerplexityTask(Task):
1503
1504
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1505
    def has_training_docs(self) -> bool:
1506
1507
        return False

baberabb's avatar
baberabb committed
1508
    def fewshot_examples(self, k: int, rnd) -> List:
1509
1510
1511
1512
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1513
1514
        return []

baberabb's avatar
baberabb committed
1515
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1516
1517
1518
1519
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1520
1521
1522

        return ""

baberabb's avatar
baberabb committed
1523
    def higher_is_better(self) -> dict:
1524
1525
1526
1527
1528
1529
1530
1531
1532
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1533
    def doc_to_text(self, doc) -> str:
1534
1535
1536
1537
1538
        return ""

    def doc_to_target(self, doc):
        return doc

1539
1540
1541
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1542

lintangsutawika's avatar
lintangsutawika committed
1543
1544
1545
1546
1547
1548
1549
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1550

1551
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1552
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1553
1554
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1555
1556
1557
1558
1559
1560
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1561
    def aggregation(self) -> dict:
1562
1563
1564
1565
1566
1567
1568
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1569
    def count_bytes(cls, doc) -> int:
1570
1571
1572
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1573
    def count_words(cls, doc) -> int:
1574
1575
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))