"official/resnet/resnet_model.py" did not exist on "a6758929de084bcb98de00e1ec6fc6837cfbeb56"
task.py 42.7 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
82
    metric_list: str = None
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

91
    def __post_init__(self):
92

Lintang Sutawika's avatar
Lintang Sutawika committed
93
94
95
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
96
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
97
                )
98
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
99
100
101
102
103
104
105

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
106
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
111
                    "until": None
112
113
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
114
115
116
                    "do_sample": False,
                    "temperature": 0.0,
                }
117

haileyschoelkopf's avatar
haileyschoelkopf committed
118
119
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

120
121
122
    def __getitem__(self, item):
        return getattr(self, item)

123
124
125
    def __setitem__(self, item, value):
        return setattr(self, item, value)

126
    def to_dict(self):
127
128
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
129
        Used for dumping results alongside full task configuration
130

haileyschoelkopf's avatar
haileyschoelkopf committed
131
132
133
134
135
136
137
138
139
140
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
141
142
143
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
144
        return cfg_dict
145

146
147
148
149
150
151
152
153
154
155
156
157

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
158

159
160
161
162
163
164
165
166
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
202
        self._config = TaskConfig(**config) if config else TaskConfig()
203
204
205

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
206
            for name, components in self._config.get(
207
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
208
            ):
209
210
211
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
212
        self.sampler = samplers.Sampler(
213
214
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
241
242
243
244
245
246
247
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

285
286
287
288
289
290
291
292
293
294
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
295
            eval_logger.warning(
296
                "has_training_docs and has_validation_docs are False"
297
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
298
            )
299
300
            return self.test_docs()

301
302
303
304
305
306
307
308
309
310
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

339
    def build_all_requests(self, limit=None, rank=None, world_size=None):
340
341
342
343
344
345
346
347
348
349
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

350
351
352
353
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

354
        instances = []
355
356
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
357
        ):
358
            # sample fewshot context #TODO: need to offset doc_id by rank now!
359
            fewshot_ctx = self.fewshot_context(
360
361
                doc,
                self._config.num_fewshot,
362
            )
363

haileyschoelkopf's avatar
haileyschoelkopf committed
364
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
365
366
367
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
368
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
369
            )
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
395
            The number of times each instance in a dataset is inferred on. Defaults to 1,
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
431
432
433
434
435
436
437
438
439
440
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

441
    @utils.positional_deprecated
442
    def fewshot_context(self, doc, num_fewshot):
443
444
445
446
447
448
449
450
451
452
453
454
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
455
456
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
457
        else:
lintangsutawika's avatar
lintangsutawika committed
458
459
460
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
461
462

        example = self.doc_to_text(doc)
463
464
465
466
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
467
        elif type(example) == int:
lintangsutawika's avatar
lintangsutawika committed
468
469
470
471
472
            if self._config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
473
474
475

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
476
477
478
479
480
481
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
482

baberabb's avatar
baberabb committed
483
    def dump_config(self) -> dict:
484
        """Returns a dictionary representing the task's config.
485
486
487
488
489

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
490
        # (num_fewshot)
491
492
        return self._config.to_dict()

493
494

class ConfigurableTask(Task):
495
    VERSION = "Yaml"
496
    OUTPUT_TYPE = None
497
    CONFIG = None
498
499
500

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
baberabb's avatar
baberabb committed
501
    ):  # TODO no super() call here
502
        # Get pre-configured attributes
503
        self._config = self.CONFIG
504

505
506
        # Use new configurations if there was no preconfiguration
        if self._config is None:
507
            self._config = TaskConfig(**config)
508
509
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
510
            if config is not None:
511
                self._config.__dict__.update(config)
512

513
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
514
515
516
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
517
518

        if self._config.output_type is not None:
519
            assert self._config.output_type in ALL_OUTPUT_TYPES
520
521
            self.OUTPUT_TYPE = self._config.output_type

522
523
524
525
526
527
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

528
529
530
531
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
532

533
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
534
        if self._config.metric_list is None:
535
            # TODO: handle this in TaskConfig.__post_init__ ?
536
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
537
538
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
539
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
540
541
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
542
543
544
545
546
547
548
549
550
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
551

552
                if self._config.process_results is not None:
553
554
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
555
556
557
558
559
560
561
562
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
563

564
                if "aggregation" in metric_config:
565
                    agg_name = metric_config["aggregation"]
566
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
567
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
568
569
570
571
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
572
                else:
573
574

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
575
                    metric_agg = get_default_aggregation(metric_name)
576
                    eval_logger.warning(
577
578
579
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
580
                    )
581
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
582

583
584
585
586
587
588
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
589
590
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
591
                        f"higher_is_better={is_higher_better(metric_name)}"
592
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
593
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
594

595
        self.download(self._config.dataset_kwargs)
596
597
598
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
599
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
600
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
601
602
603
604
605
606
607
608
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
609
610
611
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
612
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
613
        else:
614
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
615
616

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
617
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
618
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
619
620
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
621
622
623
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
624
625
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
626
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
627
            )
628

629
630
631
632
633
634
635
636
637
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

638
        # Test One Doc
639
640
641
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
642
643
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
644
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
645
646
647
648
649

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
650
651
            else:
                num_choice = len(test_choice)
652

653
654
            if type(test_text) is int:
                self.multiple_input = num_choice
655

656
        if type(test_target) is list:
657
658
            self.multiple_target = len(test_target)

659
660
661
662
663
664
665
666
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
667
    def has_training_docs(self) -> bool:
668
669
670
671
672
        if self._config.training_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
673
    def has_validation_docs(self) -> bool:
674
675
676
677
678
        if self._config.validation_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
679
    def has_test_docs(self) -> bool:
680
681
682
683
684
        if self._config.test_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
685
    def training_docs(self) -> datasets.Dataset:
686
        if self.has_training_docs():
687
            if self._config.process_docs is not None:
688
689
690
                return self._config.process_docs(
                    self.dataset[self._config.training_split]
                )
691
692
            return self.dataset[self._config.training_split]

baberabb's avatar
baberabb committed
693
    def validation_docs(self) -> datasets.Dataset:
694
        if self.has_validation_docs():
695
            if self._config.process_docs is not None:
696
697
698
                return self._config.process_docs(
                    self.dataset[self._config.validation_split]
                )
699
700
            return self.dataset[self._config.validation_split]

baberabb's avatar
baberabb committed
701
    def test_docs(self) -> datasets.Dataset:
702
        if self.has_test_docs():
703
            if self._config.process_docs is not None:
704
                return self._config.process_docs(self.dataset[self._config.test_split])
705
706
            return self.dataset[self._config.test_split]

707
    def fewshot_docs(self):
708
        if self._config.fewshot_split is not None:
709
            return self.dataset[self._config.fewshot_split]
710
711
712
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
713
                    f"Task '{self._config.task}': "
714
715
716
717
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
718

719
720
721
722
723
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
724
725
726
727
728
729
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
730

731
732
733
734
735
736
737
738
739
740
741
742
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
743
744
745

        if self.prompt is not None:
            doc_to_text = self.prompt
746
747
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
748

749
750
751
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
752
            if doc_to_text in self.features:
753
754
755
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
756
757
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
758
759
760
761
762
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
763
        elif callable(doc_to_text):
764
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
765
        # Used when applying a Promptsource template
766
        elif hasattr(doc_to_text, "apply"):
767
768
769
770
771
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
772
                return self._config.fewshot_delimiter
773
        else:
774
            print(type(doc_to_text))
775
            raise TypeError
776

777
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
778
779
780

        if self.prompt is not None:
            doc_to_target = self.prompt
781
782
783
        else:
            doc_to_target = self._config.doc_to_target

784
785
786
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
787
            if doc_to_target in self.features:
788
789
790
791
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
792
            else:
lintangsutawika's avatar
lintangsutawika committed
793
794
795
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
796
                elif len(target_string) >= 2 and (target_string[0] == "[") and (target_string[-1] == "]"):
797
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
798
799
                else:
                    return target_string
800
801
        elif type(doc_to_target) == list:
            return doc_to_target
802
        elif callable(doc_to_target):
803
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
804
        # Used when applying a Promptsource template
805
        elif hasattr(doc_to_target, "apply"):
806
            applied_prompt = doc_to_target.apply(doc)
807
808
809
810
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
811
                return self._config.fewshot_delimiter
812
813
        else:
            raise TypeError
814

baberabb's avatar
baberabb committed
815
    def doc_to_choice(self, doc: Any) -> List[str]:
816
817
818

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
819
        elif self._config.doc_to_choice is None:
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
836

837
    def gold_alias(self, doc):
838
839
840
841
842
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
843
        if self._config.gold_alias is not None:
844
845
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
846
            return self.doc_to_target(doc)
847
848
849
850
851
852
853
854
855
856

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
857
858
859
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
860

861
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
862
            arguments = (ctx, self.doc_to_target(doc))
863
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
864
            arguments = (self.doc_to_target(doc),)
865
        elif self.OUTPUT_TYPE == "multiple_choice":
866
867

            choices = self.doc_to_choice(doc)
868
            target_delimiter = self._config.target_delimiter
869
870
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
871
                cont = self.doc_to_target(doc)
872
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
873
            else:
874
                # Otherwise they are placed in the continuation
875
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
876

877
            request_list = [
878
879
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
880
                    doc=doc,
881
                    arguments=arg,
882
                    idx=i,
883
884
                    **kwargs,
                )
885
                for i, arg in enumerate(arguments)
886
            ]
887
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
888
            if "acc_mutual_info" in self._metric_fn_list.keys():
889
890
891
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
892
                # here mutual info refers to calculating
893
894
895
896
897
898
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
899
                            doc=doc,
900
                            arguments=("", "{}".format(choice)),
901
902
903
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
904
                        for i, choice in enumerate(choices)
905
906
907
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
908

909
        elif self.OUTPUT_TYPE == "greedy_until":
910
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
911
912

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
913
914
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
915
916
917

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
918
919
        if callable(self._config.process_results):
            return self._config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
920

921
        result_dict = {}
922
        use_metric = list(self._metric_fn_list.keys())
923
924
925
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
926
927
928
929
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
930
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
931
            (loglikelihood,) = results
932
933
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
934
            return {
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
950
            }
951
        elif self.OUTPUT_TYPE == "multiple_choice":
952
953

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
954

955
            # retrieve choices in List[str] form, to compute choice lengths, etc.
956
            choices = self.doc_to_choice(doc)
957
958
            completion_len = np.array([float(len(i)) for i in choices])

959
960
            if (
                2 * len(choices) == len(lls)
961
                and "acc_mutual_info" in self._metric_fn_list.keys()
962
963
964
965
966
967
968
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
969

970
971
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
972

973
974
            if self.multiple_input:
                gold = self.doc_to_text(doc)
975
            else:
976
                gold = self.doc_to_target(doc)
977
978
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
979

980
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
981
982
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
983
                exact_match = int(any([is_greedy[i] for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
984
985
986
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
987
988
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                exact_match = int(is_greedy[gold])
989
990

            result_dict = {
991
                **({"acc": acc} if "acc" in use_metric else {}),
992
993
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
994
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
995
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
996
997
            }

998
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
999
1000
1001
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1002
1003
1004
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1005
1006
        elif self.OUTPUT_TYPE == "greedy_until":

1007
            gold = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1008
1009
1010
            if self._config.doc_to_choice is not None:
                # If you set doc_to_choice, 
                # it assumes that doc_to_target returns a number.
1011
1012
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
lintangsutawika's avatar
lintangsutawika committed
1013
1014
            else:
                gold = str(gold)
1015

1016
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
1033
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1034
                    else:
1035
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1036
                else:
1037
                    result_score = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
1038
1039
1040
1041
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1042

1043
1044
                if isinstance(result_score, dict):
                    result_dict.update(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1045
                else:
1046
                    result_dict[key] = result_score
1047
        else:
lintangsutawika's avatar
lintangsutawika committed
1048
1049
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1050
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1051
            )
1052
1053
1054
1055
1056
1057
1058

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1059
        return self._higher_is_better
1060
1061
1062
1063
1064


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1065
    def doc_to_target(self, doc: dict) -> str:
1066
1067
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1068
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1069
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1070
1071
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1072
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1073
                doc=doc,
1074
                arguments=(ctx, " {}".format(choice)),
1075
                idx=i,
1076
1077
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1078
1079
            for i, choice in enumerate(doc["choices"])
        ]
1080

baberabb's avatar
baberabb committed
1081
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1082
1083
1084
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1096
    def higher_is_better(self) -> dict:
1097
1098
1099
1100
1101
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1102
    def aggregation(self) -> dict:
1103
1104
1105
1106
1107
1108
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1109
class PerplexityTask(Task):
1110
1111
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1112
    def has_training_docs(self) -> bool:
1113
1114
        return False

baberabb's avatar
baberabb committed
1115
    def fewshot_examples(self, k: int, rnd) -> List:
1116
1117
1118
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1119
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1120
1121
1122
1123
1124
1125
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1126
    def higher_is_better(self) -> dict:
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1142
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1143
1144
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1145
1146
1147
1148
1149
1150
1151
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1152

baberabb's avatar
baberabb committed
1153
    def process_results(self, doc: dict, results: float) -> dict:
1154
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1155
1156
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1157
1158
1159
1160
1161
1162
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1163
    def aggregation(self) -> dict:
1164
1165
1166
1167
1168
1169
1170
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1171
    def count_bytes(cls, doc) -> int:
1172
1173
1174
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1175
    def count_words(cls, doc) -> int:
1176
1177
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))