task.py 66.3 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
25
import shortuuid
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

lintangsutawika's avatar
lintangsutawika committed
55
56
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
57
58
59
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
60
    tag_to_task: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
61
62
63
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
64
    metric_alias: Optional[str] = None  # Still a placeholder
lintangsutawika's avatar
lintangsutawika committed
65
    version: Optional[int] = 0
lintangsutawika's avatar
lintangsutawika committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
86
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
107
108
109
110
111
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
lintangsutawika's avatar
lintangsutawika committed
112
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
113
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
114
115
116
117
118
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
119

lintangsutawika's avatar
lintangsutawika committed
120
121
122
    @property
    def group_alias(self):
        return self._config.group_alias
123
124
125
126
127

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
128
129
130
131
    @property
    def config(self):
        return self._config.to_dict()

lintangsutawika's avatar
lintangsutawika committed
132
133
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
134
135
136
137
138
        return "-".join((self.group_name, self._task_id))

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
139

lintangsutawika's avatar
lintangsutawika committed
140
141
    def __repr__(self):
        return (
142
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
143
144
        )

145

146
147
@dataclass
class TaskConfig(dict):
148
    # task naming/registry
149
150
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
151
    tag: Optional[Union[str, list]] = None
152
    group: Optional[Union[str, list]] = None
153
154
155
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
156
157
158
159
160
161
162
163
164
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
165
166
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
167
168
169
170
171
172
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
173
    description: str = ""
174
175
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
176
    fewshot_config: Optional[dict] = None
177
    # runtime configuration options
178
    num_fewshot: Optional[int] = None
179
    # scoring options
180
181
182
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
183
    repeats: int = 1
184
    filter_list: Optional[Union[str, list]] = None
185
    should_decontaminate: bool = False
186
187
188
189
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
190

Ethan Smith's avatar
Ethan Smith committed
191
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
192
        if self.generation_kwargs is not None:
193
            if self.output_type != "generate_until":
194
                eval_logger.warning(
195
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
196
197
198
199
200
201
202
203
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
204
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
205
        else:
206
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
207
208
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
209
210
211
212
213
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
214
215
                    "do_sample": False,
                }
216

217
218
219
    def __getitem__(self, item):
        return getattr(self, item)

220
221
222
    def __setitem__(self, item, value):
        return setattr(self, item, value)

223
    def to_dict(self, keep_callable: bool = False) -> dict:
224
225
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
226
        Used for dumping results alongside full task configuration
227

haileyschoelkopf's avatar
haileyschoelkopf committed
228
229
230
231
232
233
234
235
236
237
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
238
239
240
241
242
243
244
245
246
247
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
248
        return cfg_dict
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

266
267
268
269
270
271
272
273
274
275
276

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

277
    VERSION: Optional[Union[int, str]] = None
278

279
280
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
281
    DATASET_PATH: Optional[str] = None
282
283

    # The name of a subset within `DATASET_PATH`.
284
    DATASET_NAME: Optional[str] = None
285

286
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
287

288
289
    def __init__(
        self,
290
291
292
293
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
294
    ) -> None:
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
317
318
319
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
320

321
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
322
        self._task_id = shortuuid.uuid()[:8]
323
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
324

lintangsutawika's avatar
lintangsutawika committed
325
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
326
327
328
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
329

330
331
332
333
334
335
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
360
361
362
363
364
365
366
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
367

368
    @property
369
    def config(self) -> TaskConfig:
370
371
372
        """Returns the TaskConfig associated with this class."""
        return self._config

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

388
    def training_docs(self) -> Iterable:
389
390
391
392
393
394
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

395
    def validation_docs(self) -> Iterable:
396
397
398
399
400
401
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

402
    def test_docs(self) -> Iterable:
403
404
405
406
407
408
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

409
    def fewshot_docs(self) -> Iterable:
410
411
412
413
414
415
416
417
418
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
419
            eval_logger.warning(
420
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
421
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
422
            )
423
424
            return self.test_docs()

425
    def _process_doc(self, doc: dict) -> dict:
426
427
428
429
430
431
432
433
434
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
435

436
    @property
437
    def instances(self) -> List[Instance]:
438
439
440
441
442
443
444
445
446
447
448
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

449
450
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
451
452
453
454
455
456
457
458
459
460
461
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

462
463
    def build_all_requests(
        self,
464
        *,
465
466
467
468
469
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
470
471
472
473
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
474
    ) -> None:
475
        """Build a set of Instances for a task, and store them in task.instances"""
476
477
478
479

        # used with caching
        og_limit = limit

480
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
481
482
483
484
485
486
487
488
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
504
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
505

506
        instances = []
507
508
509
510
511
512
513
514
515
516

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
517
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
518
519
520
521
522
523
524
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
525
        ):
526
            # sample fewshot context #TODO: need to offset doc_id by rank now!
527
            fewshot_ctx = self.fewshot_context(
528
                doc,
529
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
530
531
532
533
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
534
            )
535

536
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
537
538
539
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
540
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
541
            )
542
543
544
545

            if not isinstance(inst, list):
                inst = [inst]

546
547
548
549
550
551
552
553
554
555
556
557
558
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
559

560
561
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
562

563
564
565
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
582
            The number of times each instance in a dataset is inferred on. Defaults to 1,
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

618
619
620
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
621
622
623
624
625
626
627
628
629
630
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

631
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
632
    def fewshot_context(
633
634
635
        self,
        doc,
        num_fewshot,
636
        rnd=None,
637
        description=None,
lintangsutawika's avatar
lintangsutawika committed
638
    ):
639
640
641
642
643
644
645
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
646
647
648
649
650
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
651
652
653
        :returns: str
            The fewshot context.
        """
654
        if rnd is None:
655
656
657
658
659
660
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
661

662
        description = description if description else ""
663
664

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
665
            labeled_examples = ""
666
        else:
lintangsutawika's avatar
lintangsutawika committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
691
            )
692
693

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
694
        return description + labeled_examples + example
695

696
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
697
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
698
699
        if hasattr(self, "_filters"):
            for f in self._filters:
700
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
701
702
703
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
704

baberabb's avatar
baberabb committed
705
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
706
        """Returns the config as a dictionary."""
707
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
708
        # (num_fewshot)
709
        return self.config.to_dict()
710

Baber Abbasi's avatar
Baber Abbasi committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

751
752
753
754
755
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

756
757
758
759
760
761
762
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
763
764
765
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
766
767
768
769
770
771
772
773
774
775
776
777
778

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

779
780
781
    @property
    def task_id(self) -> Any:
        return self._task_id
782

783

784
class ConfigurableTask(Task):
785
    VERSION = "Yaml"
786
    OUTPUT_TYPE = None
787
    CONFIG = None
788
789

    def __init__(
790
791
792
793
794
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
795
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
796
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
797
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
798

799
        # Get pre-configured attributes
800
        self._config = self.CONFIG
801

802
        # Use new configurations if there was no preconfiguration
803
        if self.config is None:
804
            self._config = TaskConfig(**config)
805
806
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
807
            if config is not None:
808
                self._config.__dict__.update(config)
809

810
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
811
812
813
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
814

815
816
817
818
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

819
        if self.config.output_type is not None:
820
821
822
823
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
824
            self.OUTPUT_TYPE = self.config.output_type
825

826
827
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
828

829
830
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
831

832
833
834
835
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
836

837
        if self.config.metric_list is None:
838
            # TODO: handle this in TaskConfig.__post_init__ ?
839
840
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

841
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
842
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
843
                self._metric_fn_kwargs[metric_name] = {}
844
845
846
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
847
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
848
        else:
849
            for metric_config in self.config.metric_list:
850
851
852
853
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
854
855
856
857
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
858
859
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
860
                }
Chris's avatar
Chris committed
861
862
863
864
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
865

866
                if self.config.process_results is not None:
867
868
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
869
870
871
872
873
874
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
875
876
877
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
878
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
879

880
                if "aggregation" in metric_config:
881
                    agg_name = metric_config["aggregation"]
882
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
883
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
884
                    elif callable(agg_name):  # noqa: E721
885
886
887
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
888
                else:
889
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
890
                    metric_agg = get_metric_aggregation(metric_name)
891
                    eval_logger.warning(
892
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
893
894
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
895
                    )
896
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
897

898
899
900
901
902
903
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
904
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
905
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
906
                        f"higher_is_better={is_higher_better(metric_name)}"
907
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
908
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
909

910
        self.download(self.config.dataset_kwargs)
911
912
913
        self._training_docs = None
        self._fewshot_docs = None

914
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
915
            self._filters = []
916
            for filter_config in self.config.filter_list:
917
918
919
920
921
922
923
924
925
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
926
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
927
        else:
928
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
929

930
931
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
932
            self.prompt = get_prompt(
933
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
934
            )
935
936
937
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
938
        if self.fewshot_docs() is not None:
939
940
941
942
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
943
944
945
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
962

963
        self.task_docs = self.eval_docs
964

965
        # Test One Doc
966
        self.features = list(self.task_docs.features.keys())
967
968
        self.multiple_input = 0
        self.multiple_target = 0
969
        test_doc = self.task_docs[0]
970
        test_text = self.doc_to_text(test_doc)
971
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
972

973
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
974
            test_choice = self.doc_to_choice(test_doc)
975
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
976
                eval_logger.error("doc_to_choice must return list")
977
978
            else:
                num_choice = len(test_choice)
979

980
            if isinstance(test_text, int):
981
                self.multiple_input = num_choice
982
983
        else:
            test_choice = None
984

985
        if isinstance(test_target, list):
986
            self.multiple_target = len(test_target)
987
        else:
988
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
989
                test_target = test_choice[test_target]
990
            else:
lintangsutawika's avatar
lintangsutawika committed
991
                test_target = str(test_target)
992

993
994
995
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
996
            check_choices = [test_target]
997
998
999
1000
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1001
1002
                    True
                    if self.config.target_delimiter.rstrip()
1003
                    != self.config.target_delimiter
1004
                    else False
1005
                )
1006

1007
                if delimiter_has_whitespace and choice_has_whitespace:
1008
1009
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1010
1011
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1012
                    eval_logger.debug(
1013
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1014
1015
                    )

1016
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1017
1018
1019
1020
1021
1022
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1023
    def has_training_docs(self) -> bool:
1024
        if self.config.training_split is not None:
1025
1026
1027
1028
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1029
    def has_validation_docs(self) -> bool:
1030
        if self.config.validation_split is not None:
1031
1032
1033
1034
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1035
    def has_test_docs(self) -> bool:
1036
        if self.config.test_split is not None:
1037
1038
1039
1040
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1041
    def training_docs(self) -> datasets.Dataset:
1042
        if self.has_training_docs():
1043
1044
1045
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1046
                )
1047
            return self.dataset[self.config.training_split]
1048

baberabb's avatar
baberabb committed
1049
    def validation_docs(self) -> datasets.Dataset:
1050
        if self.has_validation_docs():
1051
1052
1053
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1054
                )
1055
            return self.dataset[self.config.validation_split]
1056

baberabb's avatar
baberabb committed
1057
    def test_docs(self) -> datasets.Dataset:
1058
        if self.has_test_docs():
1059
1060
1061
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1062

1063
    def fewshot_docs(self):
1064
        if self.config.fewshot_split is not None:
1065
1066
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1067
            return self.dataset[self.config.fewshot_split]
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1080
        else:
1081
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1082
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1083
                    f"[Task: {self.config.task}] "
1084
1085
1086
1087
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1088

KonradSzafer's avatar
KonradSzafer committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1110
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1120
1121
1122
1123
1124
1125
1126
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1127
1128
1129
1130
1131
1132
1133
1134
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1135
1136
1137
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1138
1139
1140
1141
1142
1143
1144

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1145
1146
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1147

KonradSzafer's avatar
KonradSzafer committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1157
        else:
KonradSzafer's avatar
KonradSzafer committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1177
1178

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1208
        else:
KonradSzafer's avatar
KonradSzafer committed
1209
1210
            if self.multiple_input:
                return labeled_examples
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1221

1222
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1223
        """Iterates over FilterEnsembles and applies them to instances"""
1224
1225
        if hasattr(self, "_filters"):
            for f in self._filters:
1226
                f.apply(self._instances)
1227
1228
1229
1230
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1231
    def should_decontaminate(self):
1232
        return self.config.should_decontaminate
1233
1234

    def doc_to_decontamination_query(self, doc):
1235
        if self.config.should_decontaminate:
1236
1237
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1238
            else:
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1250

1251
    def _process_doc(self, doc: dict) -> dict:
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1263
1264
        if self.prompt is not None:
            doc_to_text = self.prompt
1265
        else:
1266
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1267

1268
        if isinstance(doc_to_text, int):
1269
            return doc_to_text
1270
        elif isinstance(doc_to_text, str):
1271
            if doc_to_text in self.features:
1272
                # if self.config.doc_to_choice is not None:
1273
1274
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1275
1276
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1277
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1278
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1279
1280
1281
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1282
        elif callable(doc_to_text):
1283
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1284
        # Used when applying a Promptsource template
1285
        elif hasattr(doc_to_text, "apply"):
1286
1287
1288
1289
1290
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1291
                return self.config.fewshot_delimiter
1292
        else:
1293
            print(type(doc_to_text))
1294
            raise TypeError
1295

1296
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1297
1298
        if self.prompt is not None:
            doc_to_target = self.prompt
1299
        else:
1300
            doc_to_target = self.config.doc_to_target
1301

1302
        if isinstance(doc_to_target, int):
1303
            return doc_to_target
1304
        elif isinstance(doc_to_target, str):
1305
            if doc_to_target in self.features:
1306
                # if self.config.doc_to_choice is not None:
1307
1308
1309
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1310
            else:
lintangsutawika's avatar
lintangsutawika committed
1311
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1312
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1313
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1314
1315
1316
1317
1318
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1319
1320
1321
1322
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1323
1324
                else:
                    return target_string
1325
        elif isinstance(doc_to_target, list):
1326
            return doc_to_target
1327
        elif callable(doc_to_target):
1328
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1329
        # Used when applying a Promptsource template
1330
        elif hasattr(doc_to_target, "apply"):
1331
            applied_prompt = doc_to_target.apply(doc)
1332
1333
1334
1335
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1336
                return self.config.fewshot_delimiter
1337
1338
        else:
            raise TypeError
1339

baberabb's avatar
baberabb committed
1340
    def doc_to_choice(self, doc: Any) -> List[str]:
1341
1342
        if self.prompt is not None:
            doc_to_choice = self.prompt
1343
        elif self.config.doc_to_choice is None:
1344
1345
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1346
            doc_to_choice = self.config.doc_to_choice
1347

1348
        if isinstance(doc_to_choice, str):
1349
1350
1351
1352
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1353
        elif isinstance(doc_to_choice, list):
1354
            return doc_to_choice
1355
        elif isinstance(doc_to_choice, dict):
1356
1357
1358
1359
1360
1361
1362
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1363

baberabb's avatar
baberabb committed
1364
1365
1366
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1367
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1368
            arguments = (ctx, self.doc_to_target(doc))
1369
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1370
            arguments = (self.doc_to_target(doc),)
1371
        elif self.OUTPUT_TYPE == "multiple_choice":
1372
            choices = self.doc_to_choice(doc)
1373
            target_delimiter = self.config.target_delimiter
1374
1375
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1376
                cont = self.doc_to_target(doc)
1377
1378
1379
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1380
            else:
1381
                # Otherwise they are placed in the continuation
1382
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1383

1384
            request_list = [
1385
1386
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1387
                    doc=doc,
1388
                    arguments=arg,
1389
                    idx=i,
1390
1391
                    **kwargs,
                )
1392
                for i, arg in enumerate(arguments)
1393
            ]
1394
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1395
            if "acc_mutual_info" in self._metric_fn_list.keys():
1396
1397
1398
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1399
                # here mutual info refers to calculating
1400
1401
1402
1403
1404
1405
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1406
                            doc=doc,
1407
                            arguments=("", "{}".format(choice)),
1408
1409
1410
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1411
                        for i, choice in enumerate(choices)
1412
1413
1414
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1415

1416
        elif self.OUTPUT_TYPE == "generate_until":
1417
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1418
1419

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1420
1421
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1422
1423

    def process_results(self, doc, results):
1424
1425
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1426

1427
        result_dict = {}
1428
        use_metric = list(self._metric_fn_list.keys())
1429
1430
1431
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1432
1433
1434
1435
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1436
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1437
            (loglikelihood,) = results
1438
1439
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1440
            return {
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1456
            }
1457
        elif self.OUTPUT_TYPE == "multiple_choice":
1458
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1459

1460
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1461
            choices = self.doc_to_choice(doc)
1462
1463
            completion_len = np.array([float(len(i)) for i in choices])

1464
1465
            if (
                2 * len(choices) == len(lls)
1466
                and "acc_mutual_info" in self._metric_fn_list.keys()
1467
1468
1469
1470
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1471
1472
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1473
1474
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1475

1476
1477
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1478

1479
1480
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1481
            else:
1482
                gold = self.doc_to_target(doc)
1483
1484

            gold_index_error = False
1485
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1486
1487
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1488
1489
                    gold_index_error = True
            else:
1490
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1491
                    gold = gold if gold < len(choices) else -100
1492
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1493
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1494

Lintang Sutawika's avatar
Lintang Sutawika committed
1495
                if gold == -100:
1496
1497
1498
1499
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1500
                    f"Label index was not in within range of available choices,"
1501
1502
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1503

1504
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1505
1506
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1507
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1508
1509
1510
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1511
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1512
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1513

Lintang Sutawika's avatar
Lintang Sutawika committed
1514
1515
1516
1517
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1518
            result_dict = {
1519
                **({"acc": acc} if "acc" in use_metric else {}),
1520
1521
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1522
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1523
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1524
1525
1526
1527
1528
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1529
1530
            }

1531
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1532
1533
1534
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1535
1536
1537
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1538
        elif self.OUTPUT_TYPE == "generate_until":
1539
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1540
            result = results[0]
1541
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1542
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1543
                # it assumes that doc_to_target returns a number.
1544
1545
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1546
1547
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1548
                gold = list(gold)
Chris's avatar
Chris committed
1549
1550
1551
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1552

lintangsutawika's avatar
lintangsutawika committed
1553
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1554
1555
1556
1557
1558
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1559
1560
1561
1562
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1563
1564
1565
1566
1567
1568
1569
1570
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1571
                    else:
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1593
                else:
1594
                    try:
1595
                        result_score = self._metric_fn_list[metric](
1596
1597
                            references=[gold],
                            predictions=[result],
1598
                            **self._metric_fn_kwargs[metric],
1599
                        )
1600
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1601
                        result_score = self._metric_fn_list[metric]([gold, result])
1602
1603
1604
1605
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1606
        else:
lintangsutawika's avatar
lintangsutawika committed
1607
1608
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1609
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1610
            )
1611
1612
1613

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1614
    def aggregation(self) -> dict:
1615
1616
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1617
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1618
        return self._higher_is_better
1619

Baber Abbasi's avatar
Baber Abbasi committed
1620
1621
1622
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1623
1624
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
1625
1626
1627
1628
1629
        return "-".join((self.task_name, self._task_id))

    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1630

1631
1632
1633
1634
1635
1636
1637
1638
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1639
1640

class MultipleChoiceTask(Task):
1641
    OUTPUT_TYPE = "loglikelihood"
1642

baberabb's avatar
baberabb committed
1643
    def doc_to_target(self, doc: dict) -> str:
1644
1645
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1646
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1647
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1648
1649
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1650
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1651
                doc=doc,
1652
                arguments=(ctx, " {}".format(choice)),
1653
                idx=i,
1654
1655
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1656
1657
            for i, choice in enumerate(doc["choices"])
        ]
1658

1659
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1660
1661
1662
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1674
    def higher_is_better(self) -> dict:
1675
1676
1677
1678
1679
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1680
    def aggregation(self) -> dict:
1681
1682
1683
1684
1685
1686
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1687
class PerplexityTask(Task):
1688
1689
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1690
    def has_training_docs(self) -> bool:
1691
1692
        return False

baberabb's avatar
baberabb committed
1693
    def fewshot_examples(self, k: int, rnd) -> List:
1694
1695
1696
1697
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1698
1699
        return []

baberabb's avatar
baberabb committed
1700
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1701
1702
1703
1704
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1705
1706
1707

        return ""

baberabb's avatar
baberabb committed
1708
    def higher_is_better(self) -> dict:
1709
1710
1711
1712
1713
1714
1715
1716
1717
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1718
    def doc_to_text(self, doc) -> str:
1719
1720
1721
1722
1723
        return ""

    def doc_to_target(self, doc):
        return doc

1724
1725
1726
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1727

lintangsutawika's avatar
lintangsutawika committed
1728
1729
1730
1731
1732
1733
1734
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1735

1736
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1737
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1738
1739
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1740
1741
1742
1743
1744
1745
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1746
    def aggregation(self) -> dict:
1747
1748
1749
1750
1751
1752
1753
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1754
    def count_bytes(cls, doc) -> int:
1755
1756
1757
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1758
    def count_words(cls, doc) -> int:
1759
1760
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))