task.py 52.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
8
from inspect import getsource
9
from typing import Any, List, Literal, Tuple, Union
10
11
12
13
14

import datasets
import numpy as np

from lm_eval import utils
15
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
17
from lm_eval.api.metrics import (
18
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
19
20
21
22
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
23
24
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
25
    get_aggregation,
26
    get_metric,
27
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
28
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
29
)
30
31
32
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

33

34
35
36
37
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
38
    "generate_until",
39
40
]

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
@dataclass
class TaskConfig(dict):
46
    # task naming/registry
47
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
48
    task_alias: str = None
49
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
50
    group_alias: Union[str, list] = None
51
52
53
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
54
55
    dataset_path: str = None
    dataset_name: str = None
56
    dataset_kwargs: dict = None
57
58
59
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
60
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
61
62
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
63
    process_docs: Callable = None
64
65
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
66
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
67
    process_results: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70
71
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
72
    fewshot_config: dict = None
73
    # runtime configuration options
74
    num_fewshot: int = None
75
    # scoring options
76
    metric_list: list = None
77
78
79
80
81
82
    output_type: Literal[
        "loglikelihood",
        "loglikelihood_rolling",
        "generate_until",
        "multiple_choice",
    ] = "generate_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88
    metadata: dict = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
89

Ethan Smith's avatar
Ethan Smith committed
90
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
91
        if self.generation_kwargs is not None:
92
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
93
                eval_logger.warning(
94
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
95
                )
96
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
97
98
99
100
101
102
103

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
104
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
105
        else:
106
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
109
                    "until": None
110
111
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
112
113
                    "do_sample": False,
                }
114

115
116
117
    def __getitem__(self, item):
        return getattr(self, item)

118
119
120
    def __setitem__(self, item, value):
        return setattr(self, item, value)

121
    def to_dict(self, keep_callable: bool = False) -> dict:
122
123
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
124
        Used for dumping results alongside full task configuration
125

haileyschoelkopf's avatar
haileyschoelkopf committed
126
127
128
129
130
131
132
133
134
135
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
136
137
138
139
140
141
142
143
144
145
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
146
        return cfg_dict
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

164
165
166
167
168
169
170
171
172
173
174
175

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
176

177
178
179
180
181
182
183
184
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
185

186
187
188
189
190
191
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
192
    ) -> None:
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
219
        self._config = TaskConfig({**config}) if config else TaskConfig()
220

lintangsutawika's avatar
lintangsutawika committed
221
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
222

Ethan Smith's avatar
Ethan Smith committed
223
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
248
249
250
251
252
253
254
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
255

256
257
258
259
260
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

297
298
299
300
301
302
303
304
305
306
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
307
            eval_logger.warning(
308
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
309
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
310
            )
311
312
            return self.test_docs()

313
314
315
316
317
318
319
320
321
322
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
323

324
325
326
327
328
329
330
331
332
333
334
335
336
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
337
    def doc_to_decontamination_query(self, doc) -> None:
338
339
340
341
342
343
344
345
346
347
348
349
350
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
351
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
352
353
354
355
356
357
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
358
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
359

Baber Abbasi's avatar
Baber Abbasi committed
360
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
361

362
        instances = []
363
364
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
365
        ):
366
            # sample fewshot context #TODO: need to offset doc_id by rank now!
367
            fewshot_ctx = self.fewshot_context(
368
                doc,
369
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
370
            )
371

372
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
373
374
375
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
376
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
377
            )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
403
            The number of times each instance in a dataset is inferred on. Defaults to 1,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

439
440
441
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
442
443
444
445
446
447
448
449
450
451
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

452
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
453
    def fewshot_context(
454
455
456
457
458
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
459
    ):
460
461
462
463
464
465
466
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
467
468
469
470
471
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
472
473
474
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
475
476
477
478
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

479
        description = description if description else ""
480
481

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
482
            labeled_examples = ""
483
        else:
lintangsutawika's avatar
lintangsutawika committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
508
            )
509
510

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
511
        return description + labeled_examples + example
512
513

    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
514
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
515
516
        if hasattr(self, "_filters"):
            for f in self._filters:
517
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
518
519
520
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
521

baberabb's avatar
baberabb committed
522
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
523
        """Returns the config as a dictionary."""
524
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
525
        # (num_fewshot)
526
        return self.config.to_dict()
527

Baber Abbasi's avatar
Baber Abbasi committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

568
569

class ConfigurableTask(Task):
570
    VERSION = "Yaml"
571
    OUTPUT_TYPE = None
572
    CONFIG = None
573
574
575

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
576
    ) -> None:  # TODO no super() call here
577
        # Get pre-configured attributes
578
        self._config = self.CONFIG
579

580
        # Use new configurations if there was no preconfiguration
581
        if self.config is None:
582
            self._config = TaskConfig(**config)
583
584
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
585
            if config is not None:
586
                self._config.__dict__.update(config)
587

588
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
589
590
591
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
592

593
594
595
596
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

597
598
599
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
600

601
602
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
603

604
605
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
606

607
608
609
610
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
611

612
        if self.config.metric_list is None:
613
            # TODO: handle this in TaskConfig.__post_init__ ?
614
615
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

616
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
617
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
618
                self._metric_fn_kwargs[metric_name] = {}
619
620
621
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
622
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
623
        else:
624
            for metric_config in self.config.metric_list:
625
626
627
628
629
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
630
631
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
632
                }
Chris's avatar
Chris committed
633
634
635
636
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
637

638
                if self.config.process_results is not None:
639
640
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
641
642
643
644
645
646
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
647
648
649
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
650
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
651

652
                if "aggregation" in metric_config:
653
                    agg_name = metric_config["aggregation"]
654
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
655
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
656
                    elif callable(agg_name):  # noqa: E721
657
658
659
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
660
                else:
661
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
662
                    metric_agg = get_metric_aggregation(metric_name)
663
                    eval_logger.warning(
664
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
665
666
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
667
                    )
668
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
669

670
671
672
673
674
675
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
676
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
677
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
678
                        f"higher_is_better={is_higher_better(metric_name)}"
679
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
680
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
681

682
        self.download(self.config.dataset_kwargs)
683
684
685
        self._training_docs = None
        self._fewshot_docs = None

686
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
687
            self._filters = []
688
            for filter_config in self.config.filter_list:
689
690
691
692
693
694
695
696
697
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
698
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
699
        else:
700
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
701

702
703
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
704
            self.prompt = get_prompt(
705
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
706
            )
707
708
709
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
710
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
711
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
712
713
714
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
715
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
716

717
        if self.has_test_docs():
718
            self.task_docs = self.test_docs()
719
        elif self.has_validation_docs():
720
            self.task_docs = self.validation_docs()
721
        else:
722
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
723

724
        # Test One Doc
725
        self.features = list(self.task_docs.features.keys())
726
727
        self.multiple_input = 0
        self.multiple_target = 0
728
        test_doc = self.task_docs[0]
729
        test_text = self.doc_to_text(test_doc)
730
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
731

732
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
733
            test_choice = self.doc_to_choice(test_doc)
734
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
735
                eval_logger.error("doc_to_choice must return list")
736
737
            else:
                num_choice = len(test_choice)
738

739
            if isinstance(test_text, int):
740
                self.multiple_input = num_choice
741
742
        else:
            test_choice = None
743

744
        if isinstance(test_target, list):
745
            self.multiple_target = len(test_target)
746
        else:
747
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
748
                test_target = test_choice[test_target]
749
            else:
lintangsutawika's avatar
lintangsutawika committed
750
                test_target = str(test_target)
751

752
753
754
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
755
            check_choices = [test_target]
756
757
758
759
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
760
761
                    True
                    if self.config.target_delimiter.rstrip()
762
                    != self.config.target_delimiter
763
                    else False
764
                )
765

766
                if delimiter_has_whitespace and choice_has_whitespace:
767
768
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
769
770
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
771
                    eval_logger.debug(
772
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
773
774
                    )

Ethan Smith's avatar
Ethan Smith committed
775
    def download(self, dataset_kwargs=None) -> None:
776
777
778
779
780
781
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
782
    def has_training_docs(self) -> bool:
783
        if self.config.training_split is not None:
784
785
786
787
            return True
        else:
            return False

baberabb's avatar
baberabb committed
788
    def has_validation_docs(self) -> bool:
789
        if self.config.validation_split is not None:
790
791
792
793
            return True
        else:
            return False

baberabb's avatar
baberabb committed
794
    def has_test_docs(self) -> bool:
795
        if self.config.test_split is not None:
796
797
798
799
            return True
        else:
            return False

baberabb's avatar
baberabb committed
800
    def training_docs(self) -> datasets.Dataset:
801
        if self.has_training_docs():
802
803
804
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
805
                )
806
            return self.dataset[self.config.training_split]
807

baberabb's avatar
baberabb committed
808
    def validation_docs(self) -> datasets.Dataset:
809
        if self.has_validation_docs():
810
811
812
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
813
                )
814
            return self.dataset[self.config.validation_split]
815

baberabb's avatar
baberabb committed
816
    def test_docs(self) -> datasets.Dataset:
817
        if self.has_test_docs():
818
819
820
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
821

822
    def fewshot_docs(self):
823
        if self.config.fewshot_split is not None:
824
825
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
826
            return self.dataset[self.config.fewshot_split]
827
        else:
828
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
829
                eval_logger.warning(
830
                    f"Task '{self.config.task}': "
831
832
833
834
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
835

lintangsutawika's avatar
lintangsutawika committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
858
859
860
861
862
863
864
865
866
867
868
869
870
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
871

872
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
873
        """Iterates over FilterEnsembles and applies them to instances"""
874
875
        if hasattr(self, "_filters"):
            for f in self._filters:
876
                f.apply(self._instances)
877
878
879
880
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

881
    def should_decontaminate(self):
882
        return self.config.should_decontaminate
883
884

    def doc_to_decontamination_query(self, doc):
885
        if self.config.should_decontaminate:
886
887
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
888
            else:
889
890
891
892
893
894
895
896
897
898
899
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
900

901
902
903
904
905
906
907
908
909
910
911
912
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
913
914
        if self.prompt is not None:
            doc_to_text = self.prompt
915
        else:
916
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
917

918
        if isinstance(doc_to_text, int):
919
            return doc_to_text
920
        elif isinstance(doc_to_text, str):
921
            if doc_to_text in self.features:
922
                # if self.config.doc_to_choice is not None:
923
924
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
925
926
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
927
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
928
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
929
930
931
                    return ast.literal_eval(text_string)
                else:
                    return text_string
932
        elif callable(doc_to_text):
933
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
934
        # Used when applying a Promptsource template
935
        elif hasattr(doc_to_text, "apply"):
936
937
938
939
940
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
941
                return self.config.fewshot_delimiter
942
        else:
943
            print(type(doc_to_text))
944
            raise TypeError
945

946
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
947
948
        if self.prompt is not None:
            doc_to_target = self.prompt
949
        else:
950
            doc_to_target = self.config.doc_to_target
951

952
        if isinstance(doc_to_target, int):
953
            return doc_to_target
954
        elif isinstance(doc_to_target, str):
955
            if doc_to_target in self.features:
956
                # if self.config.doc_to_choice is not None:
957
958
959
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
960
            else:
lintangsutawika's avatar
lintangsutawika committed
961
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
962
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
963
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
964
965
966
967
968
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
969
970
971
972
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
973
974
                else:
                    return target_string
975
        elif isinstance(doc_to_target, list):
976
            return doc_to_target
977
        elif callable(doc_to_target):
978
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
979
        # Used when applying a Promptsource template
980
        elif hasattr(doc_to_target, "apply"):
981
            applied_prompt = doc_to_target.apply(doc)
982
983
984
985
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
986
                return self.config.fewshot_delimiter
987
988
        else:
            raise TypeError
989

baberabb's avatar
baberabb committed
990
    def doc_to_choice(self, doc: Any) -> List[str]:
991
992
        if self.prompt is not None:
            doc_to_choice = self.prompt
993
        elif self.config.doc_to_choice is None:
994
995
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
996
            doc_to_choice = self.config.doc_to_choice
997

998
        if isinstance(doc_to_choice, str):
999
1000
1001
1002
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1003
        elif isinstance(doc_to_choice, list):
1004
            return doc_to_choice
1005
        elif isinstance(doc_to_choice, dict):
1006
1007
1008
1009
1010
1011
1012
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1013

baberabb's avatar
baberabb committed
1014
1015
1016
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1017
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1018
            arguments = (ctx, self.doc_to_target(doc))
1019
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1020
            arguments = (self.doc_to_target(doc),)
1021
        elif self.OUTPUT_TYPE == "multiple_choice":
1022
            choices = self.doc_to_choice(doc)
1023
            target_delimiter = self.config.target_delimiter
1024
1025
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1026
                cont = self.doc_to_target(doc)
1027
1028
1029
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1030
            else:
1031
                # Otherwise they are placed in the continuation
1032
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1033

1034
            request_list = [
1035
1036
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1037
                    doc=doc,
1038
                    arguments=arg,
1039
                    idx=i,
1040
1041
                    **kwargs,
                )
1042
                for i, arg in enumerate(arguments)
1043
            ]
1044
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1045
            if "acc_mutual_info" in self._metric_fn_list.keys():
1046
1047
1048
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1049
                # here mutual info refers to calculating
1050
1051
1052
1053
1054
1055
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1056
                            doc=doc,
1057
                            arguments=("", "{}".format(choice)),
1058
1059
1060
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1061
                        for i, choice in enumerate(choices)
1062
1063
1064
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1065

1066
        elif self.OUTPUT_TYPE == "generate_until":
1067
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1068
1069

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1070
1071
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1072
1073

    def process_results(self, doc, results):
1074
1075
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1076

1077
        result_dict = {}
1078
        use_metric = list(self._metric_fn_list.keys())
1079
1080
1081
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1082
1083
1084
1085
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1086
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1087
            (loglikelihood,) = results
1088
1089
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1090
            return {
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1106
            }
1107
        elif self.OUTPUT_TYPE == "multiple_choice":
1108
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1109

1110
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1111
            choices = self.doc_to_choice(doc)
1112
1113
            completion_len = np.array([float(len(i)) for i in choices])

1114
1115
            if (
                2 * len(choices) == len(lls)
1116
                and "acc_mutual_info" in self._metric_fn_list.keys()
1117
1118
1119
1120
1121
1122
1123
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1124

1125
1126
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1127

1128
1129
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1130
            else:
1131
                gold = self.doc_to_target(doc)
1132
1133

            gold_index_error = False
1134
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1135
1136
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1137
1138
                    gold_index_error = True
            else:
1139
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1140
                    gold = gold if gold < len(choices) else -100
1141
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1142
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1143

Lintang Sutawika's avatar
Lintang Sutawika committed
1144
                if gold == -100:
1145
1146
1147
1148
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1149
                    f"Label index was not in within range of available choices,"
1150
1151
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1152

1153
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1154
1155
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1156
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1157
1158
1159
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1160
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1161
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1162
1163

            result_dict = {
1164
                **({"acc": acc} if "acc" in use_metric else {}),
1165
1166
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1167
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1168
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1169
1170
            }

1171
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1172
1173
1174
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1175
1176
1177
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1178
        elif self.OUTPUT_TYPE == "generate_until":
1179
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1180
            result = results[0]
1181
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1182
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1183
                # it assumes that doc_to_target returns a number.
1184
1185
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1186
1187
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1188
                gold = list(gold)
Chris's avatar
Chris committed
1189
1190
1191
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1192

lintangsutawika's avatar
lintangsutawika committed
1193
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1194
1195
1196
1197
1198
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1199
1200
1201
1202
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1203
1204
1205
1206
1207
1208
1209
1210
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1211
                    else:
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1233
                else:
1234
                    try:
1235
                        result_score = self._metric_fn_list[metric](
1236
1237
                            references=[gold],
                            predictions=[result],
1238
                            **self._metric_fn_kwargs[metric],
1239
                        )
1240
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1241
                        result_score = self._metric_fn_list[metric]([gold, result])
1242
1243
1244
1245
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1246
        else:
lintangsutawika's avatar
lintangsutawika committed
1247
1248
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1249
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1250
            )
1251
1252
1253

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1254
    def aggregation(self) -> dict:
1255
1256
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1257
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1258
        return self._higher_is_better
1259

Baber Abbasi's avatar
Baber Abbasi committed
1260
1261
1262
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1263
1264
1265
1266

class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1267
    def doc_to_target(self, doc: dict) -> str:
1268
1269
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1270
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1271
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1272
1273
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1274
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1275
                doc=doc,
1276
                arguments=(ctx, " {}".format(choice)),
1277
                idx=i,
1278
1279
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1280
1281
            for i, choice in enumerate(doc["choices"])
        ]
1282

baberabb's avatar
baberabb committed
1283
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1284
1285
1286
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1298
    def higher_is_better(self) -> dict:
1299
1300
1301
1302
1303
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1304
    def aggregation(self) -> dict:
1305
1306
1307
1308
1309
1310
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1311
class PerplexityTask(Task):
1312
1313
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1314
    def has_training_docs(self) -> bool:
1315
1316
        return False

baberabb's avatar
baberabb committed
1317
    def fewshot_examples(self, k: int, rnd) -> List:
1318
1319
1320
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1321
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1322
1323
1324
1325
1326
1327
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1328
    def higher_is_better(self) -> dict:
1329
1330
1331
1332
1333
1334
1335
1336
1337
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1338
    def doc_to_text(self, doc) -> str:
1339
1340
1341
1342
1343
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1344
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1345
1346
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1347
1348
1349
1350
1351
1352
1353
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1354

baberabb's avatar
baberabb committed
1355
    def process_results(self, doc: dict, results: float) -> dict:
1356
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1357
1358
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1359
1360
1361
1362
1363
1364
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1365
    def aggregation(self) -> dict:
1366
1367
1368
1369
1370
1371
1372
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1373
    def count_bytes(cls, doc) -> int:
1374
1375
1376
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1377
    def count_words(cls, doc) -> int:
1378
1379
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))