task.py 43.9 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
37
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
55
    group: Union[str, list] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
59
60
    dataset_path: str = None
    dataset_name: str = None
61
    dataset_kwargs: dict = None
62
63
64
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
65
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
66
67
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
68
    process_docs: Callable = None
69
70
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
71
    doc_to_choice: Union[Callable, str, dict, list] = None
72
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
82
    metric_list: str = None
    output_type: str = "greedy_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

91
    def __post_init__(self):
92

Lintang Sutawika's avatar
Lintang Sutawika committed
93
94
95
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
96
                    "passed `generation_kwargs`, but not using `output_type: greedy_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
97
                )
98
                assert self.output_type != "greedy_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
99
100
101
102
103
104
105

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
106
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
111
                    "until": None
112
113
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
114
115
116
                    "do_sample": False,
                    "temperature": 0.0,
                }
117

haileyschoelkopf's avatar
haileyschoelkopf committed
118
119
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

120
121
122
    def __getitem__(self, item):
        return getattr(self, item)

123
124
125
    def __setitem__(self, item, value):
        return setattr(self, item, value)

126
    def to_dict(self):
127
128
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
129
        Used for dumping results alongside full task configuration
130

haileyschoelkopf's avatar
haileyschoelkopf committed
131
132
133
134
135
136
137
138
139
140
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
141
142
143
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
144
        return cfg_dict
145

146
147
148
149
150
151
152
153
154
155
156
157

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
158

159
160
161
162
163
164
165
166
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
202
        self._config = TaskConfig(**config) if config else TaskConfig()
203
204
205

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
206
            for name, components in self._config.get(
207
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
208
            ):
209
210
211
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
212
        self.sampler = samplers.Sampler(
213
214
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
241
242
243
244
245
246
247
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

285
286
287
288
289
290
291
292
293
294
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
295
            eval_logger.warning(
296
                "has_training_docs and has_validation_docs are False"
297
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
298
            )
299
300
            return self.test_docs()

301
302
303
304
305
306
307
308
309
310
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

339
    def build_all_requests(self, limit=None, rank=None, world_size=None):
340
341
342
343
344
345
346
347
348
349
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

350
351
352
353
        eval_logger.info(
            f"Building contexts for task '{self._config.task}' on rank {rank}..."
        )

354
        instances = []
355
356
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
357
        ):
358
            # sample fewshot context #TODO: need to offset doc_id by rank now!
359
            fewshot_ctx = self.fewshot_context(
360
361
                doc,
                self._config.num_fewshot,
362
            )
363

haileyschoelkopf's avatar
haileyschoelkopf committed
364
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
365
366
367
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
368
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
369
            )
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
395
            The number of times each instance in a dataset is inferred on. Defaults to 1,
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
431
432
433
434
435
436
437
438
439
440
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

441
    @utils.positional_deprecated
442
    def fewshot_context(self, doc, num_fewshot):
443
444
445
446
447
448
449
450
451
452
453
454
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
455
456
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
457
        else:
lintangsutawika's avatar
lintangsutawika committed
458
459
460
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
461
462

        example = self.doc_to_text(doc)
463
464
465
466
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
467
        elif type(example) == int:
lintangsutawika's avatar
lintangsutawika committed
468
469
470
471
472
            if self._config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
473
474
475

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
476
477
478
479
480
481
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
482

baberabb's avatar
baberabb committed
483
    def dump_config(self) -> dict:
484
        """Returns a dictionary representing the task's config.
485
486
487
488
489

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
490
        # (num_fewshot)
491
492
        return self._config.to_dict()

493
494

class ConfigurableTask(Task):
495
    VERSION = "Yaml"
496
    OUTPUT_TYPE = None
497
    CONFIG = None
498
499
500

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
baberabb's avatar
baberabb committed
501
    ):  # TODO no super() call here
502
        # Get pre-configured attributes
503
        self._config = self.CONFIG
504

505
506
        # Use new configurations if there was no preconfiguration
        if self._config is None:
507
            self._config = TaskConfig(**config)
508
509
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
510
            if config is not None:
511
                self._config.__dict__.update(config)
512

513
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
514
515
516
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
517
518

        if self._config.output_type is not None:
519
            assert self._config.output_type in ALL_OUTPUT_TYPES
520
521
            self.OUTPUT_TYPE = self._config.output_type

522
523
524
525
526
527
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

528
529
530
531
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
532

533
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
534
        if self._config.metric_list is None:
535
            # TODO: handle this in TaskConfig.__post_init__ ?
536
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
537
538
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
539
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
540
541
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
542
543
544
545
546
547
548
549
550
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
551

552
                if self._config.process_results is not None:
553
554
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
555
556
557
558
559
560
561
562
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
                    self._metric_fn_list[metric_name] = get_metric(metric_name)
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
563

564
                if "aggregation" in metric_config:
565
                    agg_name = metric_config["aggregation"]
566
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
567
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
568
569
570
571
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
572
                else:
573
574

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
575
                    metric_agg = get_default_aggregation(metric_name)
576
                    eval_logger.warning(
577
578
579
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
580
                    )
581
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
582

583
584
585
586
587
588
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
589
590
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
591
                        f"higher_is_better={is_higher_better(metric_name)}"
592
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
593
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
594

595
        self.download(self._config.dataset_kwargs)
596
597
598
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
599
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
600
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
601
602
603
604
605
606
607
608
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
609
610
611
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
612
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
613
        else:
614
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
615
616

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
617
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
618
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
619
620
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
621
622
623
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
624
625
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
626
                list(self.fewshot_docs()), self, rnd=random.Random(1234)
627
            )
628

629
630
631
632
633
634
635
636
637
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

638
        # Test One Doc
639
640
641
        self.features = list(docs.features.keys())
        self.multiple_input = 0
        self.multiple_target = 0
642
643
        test_doc = docs[0]
        test_text = self.doc_to_text(test_doc)
644
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
645
646
647
648
649

        if self._config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
650
651
            else:
                num_choice = len(test_choice)
652

653
654
            if type(test_text) is int:
                self.multiple_input = num_choice
655
656
        else:
            test_choice = None
657

658
        if type(test_target) is list:
659
            self.multiple_target = len(test_target)
660
        else:
lintangsutawika's avatar
lintangsutawika committed
661
            if (type(test_target) is int) and (test_choice is not None):
662
663
664
                test_target = [self.doc_to_choice(test_target)[test_target]]
            else:
                test_target = [test_target]
665

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        if test_choice is not None:
            check_choices = test_choice
        else:
            check_choices = test_target

        for choice in check_choices:
            choice_has_whitespace = True if " " in choice else False
            delimiter_has_whitespace = (
                True if " " in self._config.target_delimiter else False
            )

            if delimiter_has_whitespace and choice_has_whitespace:
                eval_logger.warning(
                    f'Both target_delimiter and target choice: "{choice}" have whitespace'
                )
            elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
682
                eval_logger.warning(
683
                    f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
684
                )
685

686
687
688
689
690
691
692
693
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
694
    def has_training_docs(self) -> bool:
695
696
697
698
699
        if self._config.training_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
700
    def has_validation_docs(self) -> bool:
701
702
703
704
705
        if self._config.validation_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
706
    def has_test_docs(self) -> bool:
707
708
709
710
711
        if self._config.test_split is not None:
            return True
        else:
            return False

baberabb's avatar
baberabb committed
712
    def training_docs(self) -> datasets.Dataset:
713
        if self.has_training_docs():
714
            if self._config.process_docs is not None:
715
716
717
                return self._config.process_docs(
                    self.dataset[self._config.training_split]
                )
718
719
            return self.dataset[self._config.training_split]

baberabb's avatar
baberabb committed
720
    def validation_docs(self) -> datasets.Dataset:
721
        if self.has_validation_docs():
722
            if self._config.process_docs is not None:
723
724
725
                return self._config.process_docs(
                    self.dataset[self._config.validation_split]
                )
726
727
            return self.dataset[self._config.validation_split]

baberabb's avatar
baberabb committed
728
    def test_docs(self) -> datasets.Dataset:
729
        if self.has_test_docs():
730
            if self._config.process_docs is not None:
731
                return self._config.process_docs(self.dataset[self._config.test_split])
732
733
            return self.dataset[self._config.test_split]

734
    def fewshot_docs(self):
735
        if self._config.fewshot_split is not None:
736
            return self.dataset[self._config.fewshot_split]
737
738
739
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
740
                    f"Task '{self._config.task}': "
741
742
743
744
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
745

746
747
748
749
750
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
751
752
753
754
755
756
            if self._config.doc_to_decontamination_query in self.features:
                return doc[self._config.doc_to_decontamination_query]
            else:
                return ast.literal_eval(
                    utils.apply_template(self._config.doc_to_decontamination_query, doc)
                )
757

758
759
760
761
762
763
764
765
766
767
768
769
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
770
771
772

        if self.prompt is not None:
            doc_to_text = self.prompt
773
774
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
775

776
777
778
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
779
            if doc_to_text in self.features:
780
781
782
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
783
784
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
785
786
787
788
789
                text_string = utils.apply_template(doc_to_text, doc)
                if text_string.isdigit():
                    return ast.literal_eval(text_string)
                else:
                    return text_string
790
        elif callable(doc_to_text):
791
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
792
        # Used when applying a Promptsource template
793
        elif hasattr(doc_to_text, "apply"):
794
795
796
797
798
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
799
                return self._config.fewshot_delimiter
800
        else:
801
            print(type(doc_to_text))
802
            raise TypeError
803

804
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
805
806
807

        if self.prompt is not None:
            doc_to_target = self.prompt
808
809
810
        else:
            doc_to_target = self._config.doc_to_target

811
812
813
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
814
            if doc_to_target in self.features:
815
816
817
818
                # if self._config.doc_to_choice is not None:
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
819
            else:
lintangsutawika's avatar
lintangsutawika committed
820
821
822
                target_string = utils.apply_template(doc_to_target, doc)
                if target_string.isdigit():
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
823
824
825
826
827
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
828
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
829
830
                else:
                    return target_string
831
832
        elif type(doc_to_target) == list:
            return doc_to_target
833
        elif callable(doc_to_target):
834
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
835
        # Used when applying a Promptsource template
836
        elif hasattr(doc_to_target, "apply"):
837
            applied_prompt = doc_to_target.apply(doc)
838
839
840
841
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
842
                return self._config.fewshot_delimiter
843
844
        else:
            raise TypeError
845

baberabb's avatar
baberabb committed
846
    def doc_to_choice(self, doc: Any) -> List[str]:
847
848
849

        if self.prompt is not None:
            doc_to_choice = self.prompt
lintangsutawika's avatar
lintangsutawika committed
850
        elif self._config.doc_to_choice is None:
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
            doc_to_choice = self._config.doc_to_choice

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
867

868
    def gold_alias(self, doc):
869
870
871
872
873
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
874
        if self._config.gold_alias is not None:
875
876
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
877
            return self.doc_to_target(doc)
878
879
880
881
882
883
884
885
886
887

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
888
889
890
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
891

892
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
893
            arguments = (ctx, self.doc_to_target(doc))
894
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
895
            arguments = (self.doc_to_target(doc),)
896
        elif self.OUTPUT_TYPE == "multiple_choice":
897
898

            choices = self.doc_to_choice(doc)
899
            target_delimiter = self._config.target_delimiter
900
901
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
902
                cont = self.doc_to_target(doc)
903
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
904
            else:
905
                # Otherwise they are placed in the continuation
906
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
907

908
            request_list = [
909
910
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
911
                    doc=doc,
912
                    arguments=arg,
913
                    idx=i,
914
915
                    **kwargs,
                )
916
                for i, arg in enumerate(arguments)
917
            ]
918
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
919
            if "acc_mutual_info" in self._metric_fn_list.keys():
920
921
922
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
923
                # here mutual info refers to calculating
924
925
926
927
928
929
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
930
                            doc=doc,
931
                            arguments=("", "{}".format(choice)),
932
933
934
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
935
                        for i, choice in enumerate(choices)
936
937
938
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
939

940
        elif self.OUTPUT_TYPE == "greedy_until":
941
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
942
943

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
944
945
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
946
947
948

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
949
950
        if callable(self._config.process_results):
            return self._config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
951

952
        result_dict = {}
953
        use_metric = list(self._metric_fn_list.keys())
954
955
956
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
957
958
959
960
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
961
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
962
            (loglikelihood,) = results
963
964
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
965
            return {
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
981
            }
982
        elif self.OUTPUT_TYPE == "multiple_choice":
983
984

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
985

986
            # retrieve choices in List[str] form, to compute choice lengths, etc.
987
            choices = self.doc_to_choice(doc)
988
989
            completion_len = np.array([float(len(i)) for i in choices])

990
991
            if (
                2 * len(choices) == len(lls)
992
                and "acc_mutual_info" in self._metric_fn_list.keys()
993
994
995
996
997
998
999
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1000

1001
1002
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1003

1004
1005
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1006
            else:
1007
                gold = self.doc_to_target(doc)
1008
1009
                if type(gold) is str:
                    gold = choices.index(gold)
lintangsutawika's avatar
lintangsutawika committed
1010

1011
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1012
1013
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
1014
                exact_match = int(any([is_greedy[i] for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1015
1016
1017
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1018
1019
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                exact_match = int(is_greedy[gold])
1020
1021

            result_dict = {
1022
                **({"acc": acc} if "acc" in use_metric else {}),
1023
1024
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1025
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1026
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1027
1028
            }

1029
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1030
1031
1032
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1033
1034
1035
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1036
1037
        elif self.OUTPUT_TYPE == "greedy_until":

1038
            gold = self.doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1039
            if self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1040
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1041
                # it assumes that doc_to_target returns a number.
1042
1043
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
lintangsutawika's avatar
lintangsutawika committed
1044
1045
            else:
                gold = str(gold)
1046

1047
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
                    for gold_option in gold:
                        res = self._metric_fn_list[key](
                            references=[gold_option],
                            predictions=[result],
                            **self._metric_fn_kwargs[key],
                        )
                        if isinstance(res, dict):
                            # TODO: this handles the case where HF evaluate returns a dict.
                            res = res[key]
                        scores.append(res)
                    if any(scores):
1064
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1065
                    else:
1066
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1067
                else:
1068
                    result_score = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
1069
1070
1071
1072
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[key],
                    )
1073

1074
1075
                if isinstance(result_score, dict):
                    result_dict.update(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1076
                else:
1077
                    result_dict[key] = result_score
1078
        else:
lintangsutawika's avatar
lintangsutawika committed
1079
1080
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1081
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until' or 'multiple_choice'",
1082
            )
1083
1084
1085
1086
1087
1088
1089

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1090
        return self._higher_is_better
1091
1092
1093
1094
1095


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1096
    def doc_to_target(self, doc: dict) -> str:
1097
1098
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1099
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1100
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1101
1102
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1103
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1104
                doc=doc,
1105
                arguments=(ctx, " {}".format(choice)),
1106
                idx=i,
1107
1108
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1109
1110
            for i, choice in enumerate(doc["choices"])
        ]
1111

baberabb's avatar
baberabb committed
1112
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1113
1114
1115
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1127
    def higher_is_better(self) -> dict:
1128
1129
1130
1131
1132
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1133
    def aggregation(self) -> dict:
1134
1135
1136
1137
1138
1139
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1140
class PerplexityTask(Task):
1141
1142
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1143
    def has_training_docs(self) -> bool:
1144
1145
        return False

baberabb's avatar
baberabb committed
1146
    def fewshot_examples(self, k: int, rnd) -> List:
1147
1148
1149
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1150
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1151
1152
1153
1154
1155
1156
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1157
    def higher_is_better(self) -> dict:
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1173
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1174
1175
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1176
1177
1178
1179
1180
1181
1182
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1183

baberabb's avatar
baberabb committed
1184
    def process_results(self, doc: dict, results: float) -> dict:
1185
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1186
1187
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1188
1189
1190
1191
1192
1193
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1194
    def aggregation(self) -> dict:
1195
1196
1197
1198
1199
1200
1201
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1202
    def count_bytes(cls, doc) -> int:
1203
1204
1205
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1206
    def count_words(cls, doc) -> int:
1207
1208
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))