task.py 51.8 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
8
from inspect import getsource
9
from typing import Any, List, Literal, Tuple, Union
10
11
12
13
14

import datasets
import numpy as np

from lm_eval import utils
15
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
17
from lm_eval.api.metrics import (
18
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
19
20
21
22
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
23
24
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
25
    get_aggregation,
26
    get_metric,
27
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
28
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
29
)
30
31
32
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

33

34
35
36
37
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
38
    "generate_until",
39
40
]

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
@dataclass
class TaskConfig(dict):
46
    # task naming/registry
47
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
48
    task_alias: str = None
49
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
50
    group_alias: Union[str, list] = None
51
52
53
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
54
55
    dataset_path: str = None
    dataset_name: str = None
56
    dataset_kwargs: dict = None
57
58
59
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
60
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
61
62
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
63
    process_docs: Callable = None
64
65
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
66
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
67
    process_results: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70
71
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
72
    fewshot_config: dict = None
73
    # runtime configuration options
74
    num_fewshot: int = None
75
    # scoring options
76
    metric_list: list = None
77
78
79
80
81
82
    output_type: Literal[
        "loglikelihood",
        "loglikelihood_rolling",
        "generate_until",
        "multiple_choice",
    ] = "generate_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

89
    metadata: dict = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

Ethan Smith's avatar
Ethan Smith committed
91
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
92
        if self.generation_kwargs is not None:
93
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
94
                eval_logger.warning(
95
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
96
                )
97
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
98
99
100
101
102
103
104

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
105
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
106
        else:
107
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
108
109
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
110
                    "until": None
111
112
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
113
114
                    "do_sample": False,
                }
115

116
117
118
    def __getitem__(self, item):
        return getattr(self, item)

119
120
121
    def __setitem__(self, item, value):
        return setattr(self, item, value)

122
    def to_dict(self, keep_callable: bool = False) -> dict:
123
124
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
125
        Used for dumping results alongside full task configuration
126

haileyschoelkopf's avatar
haileyschoelkopf committed
127
128
129
130
131
132
133
134
135
136
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
137
138
139
140
141
142
143
144
145
146
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
        return cfg_dict
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

165
166
167
168
169
170
171
172
173
174
175
176

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
177

178
179
180
181
182
183
184
185
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
186

187
188
189
190
191
192
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
193
    ) -> None:
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
220
        self._config = TaskConfig({**config}) if config else TaskConfig()
221

lintangsutawika's avatar
lintangsutawika committed
222
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
223

Ethan Smith's avatar
Ethan Smith committed
224
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
249
250
251
252
253
254
255
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
256

257
258
259
260
261
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

298
299
300
301
302
303
304
305
306
307
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
308
            eval_logger.warning(
309
                "has_training_docs and has_validation_docs are False"
310
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
311
            )
312
313
            return self.test_docs()

314
315
316
317
318
319
320
321
322
323
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
324

325
326
327
328
329
330
331
332
333
334
335
336
337
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
338
    def doc_to_decontamination_query(self, doc) -> None:
339
340
341
342
343
344
345
346
347
348
349
350
351
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
352
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
353
354
355
356
357
358
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
359
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
360

361
        eval_logger.info(f"Building contexts for task on rank {rank}...")
362

363
        instances = []
364
365
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
366
        ):
367
            # sample fewshot context #TODO: need to offset doc_id by rank now!
368
            fewshot_ctx = self.fewshot_context(
369
                doc,
370
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
371
            )
372

373
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
374
375
376
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
377
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
378
            )
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
404
            The number of times each instance in a dataset is inferred on. Defaults to 1,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
440
441
442
443
444
445
446
447
448
449
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

450
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
451
    def fewshot_context(
452
453
454
455
456
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
457
    ):
458
459
460
461
462
463
464
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
465
466
467
468
469
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
470
471
472
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
473
474
475
476
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

477
        description = description if description else ""
478
479

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
480
            labeled_examples = ""
481
        else:
lintangsutawika's avatar
lintangsutawika committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
506
            )
507
508

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
509
        return description + labeled_examples + example
510
511

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
512
513
        if hasattr(self, "_filters"):
            for f in self._filters:
514
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
515
516
517
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
518

baberabb's avatar
baberabb committed
519
    def dump_config(self) -> dict:
520
        """Returns a dictionary representing the task's config.
521
522
523
524
525

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
526
        # (num_fewshot)
527
        return self.config.to_dict()
528

529
530

class ConfigurableTask(Task):
531
    VERSION = "Yaml"
532
    OUTPUT_TYPE = None
533
    CONFIG = None
534
535
536

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
537
    ) -> None:  # TODO no super() call here
538
        # Get pre-configured attributes
539
        self._config = self.CONFIG
540

541
        # Use new configurations if there was no preconfiguration
542
        if self.config is None:
543
            self._config = TaskConfig(**config)
544
545
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
546
            if config is not None:
547
                self._config.__dict__.update(config)
548

549
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
550
551
552
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
553

554
555
556
557
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

558
559
560
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
561

562
563
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
564

565
566
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
567

568
569
570
571
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
572

573
        if self.config.metric_list is None:
574
            # TODO: handle this in TaskConfig.__post_init__ ?
575
576
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

577
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
578
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
579
                self._metric_fn_kwargs[metric_name] = {}
580
581
582
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
583
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
584
        else:
585
            for metric_config in self.config.metric_list:
586
587
588
589
590
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
591
592
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
593
                }
Chris's avatar
Chris committed
594
595
596
597
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
598

599
                if self.config.process_results is not None:
600
601
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
602
603
604
605
606
607
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
608
609
610
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
611
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
612

613
                if "aggregation" in metric_config:
614
                    agg_name = metric_config["aggregation"]
615
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
616
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
617
                    elif callable(agg_name):  # noqa: E721
618
619
620
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
621
                else:
622
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
623
                    metric_agg = get_metric_aggregation(metric_name)
624
                    eval_logger.warning(
baberabb's avatar
baberabb committed
625
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
626
627
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
628
                    )
629
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
630

631
632
633
634
635
636
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
637
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
638
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
639
                        f"higher_is_better={is_higher_better(metric_name)}"
640
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
641
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
642

643
        self.download(self.config.dataset_kwargs)
644
645
646
        self._training_docs = None
        self._fewshot_docs = None

647
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
648
            self._filters = []
649
            for filter_config in self.config.filter_list:
650
651
652
653
654
655
656
657
658
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
659
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
660
        else:
661
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
662

663
664
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
665
            self.prompt = get_prompt(
666
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
667
            )
668
669
670
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
671
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
672
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
673
674
675
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
676
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
677

678
        if self.has_test_docs():
679
            self.task_docs = self.test_docs()
680
        elif self.has_validation_docs():
681
            self.task_docs = self.validation_docs()
682
        else:
683
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
684

685
        # Test One Doc
686
        self.features = list(self.task_docs.features.keys())
687
688
        self.multiple_input = 0
        self.multiple_target = 0
689
        test_doc = self.task_docs[0]
690
        test_text = self.doc_to_text(test_doc)
691
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
692

693
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
694
            test_choice = self.doc_to_choice(test_doc)
695
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
696
                eval_logger.error("doc_to_choice must return list")
697
698
            else:
                num_choice = len(test_choice)
699

700
            if isinstance(test_text, int):
701
                self.multiple_input = num_choice
702
703
        else:
            test_choice = None
704

705
        if isinstance(test_target, list):
706
            self.multiple_target = len(test_target)
707
        else:
708
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
709
                test_target = test_choice[test_target]
710
            else:
lintangsutawika's avatar
lintangsutawika committed
711
                test_target = str(test_target)
712

713
714
715
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
716
            check_choices = [test_target]
717
718
719
720
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
721
722
                    True
                    if self.config.target_delimiter.rstrip()
723
                    != self.config.target_delimiter
724
                    else False
725
                )
726

727
                if delimiter_has_whitespace and choice_has_whitespace:
728
729
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
730
731
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
732
                    eval_logger.debug(
733
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
734
735
                    )

Ethan Smith's avatar
Ethan Smith committed
736
    def download(self, dataset_kwargs=None) -> None:
737
738
739
740
741
742
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
743
    def has_training_docs(self) -> bool:
744
        if self.config.training_split is not None:
745
746
747
748
            return True
        else:
            return False

baberabb's avatar
baberabb committed
749
    def has_validation_docs(self) -> bool:
750
        if self.config.validation_split is not None:
751
752
753
754
            return True
        else:
            return False

baberabb's avatar
baberabb committed
755
    def has_test_docs(self) -> bool:
756
        if self.config.test_split is not None:
757
758
759
760
            return True
        else:
            return False

baberabb's avatar
baberabb committed
761
    def training_docs(self) -> datasets.Dataset:
762
        if self.has_training_docs():
763
764
765
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
766
                )
767
            return self.dataset[self.config.training_split]
768

baberabb's avatar
baberabb committed
769
    def validation_docs(self) -> datasets.Dataset:
770
        if self.has_validation_docs():
771
772
773
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
774
                )
775
            return self.dataset[self.config.validation_split]
776

baberabb's avatar
baberabb committed
777
    def test_docs(self) -> datasets.Dataset:
778
        if self.has_test_docs():
779
780
781
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
782

783
    def fewshot_docs(self):
784
        if self.config.fewshot_split is not None:
785
786
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
787
            return self.dataset[self.config.fewshot_split]
788
        else:
789
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
790
                eval_logger.warning(
791
                    f"Task '{self.config.task}': "
792
793
794
795
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
796

lintangsutawika's avatar
lintangsutawika committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
819
820
821
822
823
824
825
826
827
828
829
830
831
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
832

833
834
835
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
836
                f.apply(self._instances)
837
838
839
840
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

841
    def should_decontaminate(self):
842
        return self.config.should_decontaminate
843
844

    def doc_to_decontamination_query(self, doc):
845
        if self.config.should_decontaminate:
846
847
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
848
            else:
849
850
851
852
853
854
855
856
857
858
859
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
860

861
862
863
864
865
866
867
868
869
870
871
872
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
873
874
        if self.prompt is not None:
            doc_to_text = self.prompt
875
        else:
876
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
877

878
        if isinstance(doc_to_text, int):
879
            return doc_to_text
880
        elif isinstance(doc_to_text, str):
881
            if doc_to_text in self.features:
882
                # if self.config.doc_to_choice is not None:
883
884
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
885
886
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
887
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
888
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
889
890
891
                    return ast.literal_eval(text_string)
                else:
                    return text_string
892
        elif callable(doc_to_text):
893
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
894
        # Used when applying a Promptsource template
895
        elif hasattr(doc_to_text, "apply"):
896
897
898
899
900
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
901
                return self.config.fewshot_delimiter
902
        else:
903
            print(type(doc_to_text))
904
            raise TypeError
905

906
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
907
908
        if self.prompt is not None:
            doc_to_target = self.prompt
909
        else:
910
            doc_to_target = self.config.doc_to_target
911

912
        if isinstance(doc_to_target, int):
913
            return doc_to_target
914
        elif isinstance(doc_to_target, str):
915
            if doc_to_target in self.features:
916
                # if self.config.doc_to_choice is not None:
917
918
919
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
920
            else:
lintangsutawika's avatar
lintangsutawika committed
921
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
922
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
923
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
924
925
926
927
928
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
929
930
931
932
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
933
934
                else:
                    return target_string
935
        elif isinstance(doc_to_target, list):
936
            return doc_to_target
937
        elif callable(doc_to_target):
938
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
939
        # Used when applying a Promptsource template
940
        elif hasattr(doc_to_target, "apply"):
941
            applied_prompt = doc_to_target.apply(doc)
942
943
944
945
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
946
                return self.config.fewshot_delimiter
947
948
        else:
            raise TypeError
949

baberabb's avatar
baberabb committed
950
    def doc_to_choice(self, doc: Any) -> List[str]:
951
952
        if self.prompt is not None:
            doc_to_choice = self.prompt
953
        elif self.config.doc_to_choice is None:
954
955
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
956
            doc_to_choice = self.config.doc_to_choice
957

958
        if isinstance(doc_to_choice, str):
959
960
961
962
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
963
        elif isinstance(doc_to_choice, list):
964
            return doc_to_choice
965
        elif isinstance(doc_to_choice, dict):
966
967
968
969
970
971
972
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
973

baberabb's avatar
baberabb committed
974
975
976
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
977
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
978
            arguments = (ctx, self.doc_to_target(doc))
979
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
980
            arguments = (self.doc_to_target(doc),)
981
        elif self.OUTPUT_TYPE == "multiple_choice":
982
            choices = self.doc_to_choice(doc)
983
            target_delimiter = self.config.target_delimiter
984
985
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
986
                cont = self.doc_to_target(doc)
987
988
989
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
990
            else:
991
                # Otherwise they are placed in the continuation
992
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
993

994
            request_list = [
995
996
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
997
                    doc=doc,
998
                    arguments=arg,
999
                    idx=i,
1000
1001
                    **kwargs,
                )
1002
                for i, arg in enumerate(arguments)
1003
            ]
1004
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1005
            if "acc_mutual_info" in self._metric_fn_list.keys():
1006
1007
1008
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1009
                # here mutual info refers to calculating
1010
1011
1012
1013
1014
1015
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1016
                            doc=doc,
1017
                            arguments=("", "{}".format(choice)),
1018
1019
1020
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1021
                        for i, choice in enumerate(choices)
1022
1023
1024
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1025

1026
        elif self.OUTPUT_TYPE == "generate_until":
1027
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1028
1029

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1030
1031
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1032
1033

    def process_results(self, doc, results):
1034
1035
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1036

1037
        result_dict = {}
1038
        use_metric = list(self._metric_fn_list.keys())
1039
1040
1041
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1042
1043
1044
1045
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1046
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1047
            (loglikelihood,) = results
1048
1049
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1050
            return {
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1066
            }
1067
        elif self.OUTPUT_TYPE == "multiple_choice":
1068
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1069

1070
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1071
            choices = self.doc_to_choice(doc)
1072
1073
            completion_len = np.array([float(len(i)) for i in choices])

1074
1075
            if (
                2 * len(choices) == len(lls)
1076
                and "acc_mutual_info" in self._metric_fn_list.keys()
1077
1078
1079
1080
1081
1082
1083
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1084

1085
1086
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1087

1088
1089
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1090
            else:
1091
                gold = self.doc_to_target(doc)
1092
1093

            gold_index_error = False
1094
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1095
1096
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1097
1098
                    gold_index_error = True
            else:
1099
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1100
                    gold = gold if gold < len(choices) else -100
1101
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1102
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1103

Lintang Sutawika's avatar
Lintang Sutawika committed
1104
                if gold == -100:
1105
1106
1107
1108
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1109
                    f"Label index was not in within range of available choices,"
1110
1111
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1112

1113
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1114
1115
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1116
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1117
1118
1119
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1120
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1121
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1122
1123

            result_dict = {
1124
                **({"acc": acc} if "acc" in use_metric else {}),
1125
1126
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1127
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1128
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1129
1130
            }

1131
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1132
1133
1134
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1135
1136
1137
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1138
        elif self.OUTPUT_TYPE == "generate_until":
1139
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1140
            result = results[0]
1141
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1142
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1143
                # it assumes that doc_to_target returns a number.
1144
1145
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1146
1147
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1148
                gold = list(gold)
Chris's avatar
Chris committed
1149
1150
1151
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1152

lintangsutawika's avatar
lintangsutawika committed
1153
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1154
1155
1156
1157
1158
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1159
1160
1161
1162
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1163
1164
1165
1166
1167
1168
1169
1170
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1171
                    else:
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1193
                else:
1194
                    try:
1195
                        result_score = self._metric_fn_list[metric](
1196
1197
                            references=[gold],
                            predictions=[result],
1198
                            **self._metric_fn_kwargs[metric],
1199
                        )
1200
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1201
                        result_score = self._metric_fn_list[metric]([gold, result])
1202
1203
1204
1205
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1206
        else:
lintangsutawika's avatar
lintangsutawika committed
1207
1208
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1209
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1210
            )
1211
1212
1213

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1214
    def aggregation(self) -> dict:
1215
1216
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1217
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1218
        return self._higher_is_better
1219

Baber Abbasi's avatar
Baber Abbasi committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

    def override_config(
        self, key: str = None, value: Any = None, update: bool = False
    ) -> None:
        if update:
            current_value = getattr(self._config, key)
            assert isinstance(current_value, dict)
            current_value.update(value)
            setattr(self._config, key, current_value)
        else:
            setattr(self._config, key, value)

1254
1255
1256
1257

class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1258
    def doc_to_target(self, doc: dict) -> str:
1259
1260
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1261
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1262
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1263
1264
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1265
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1266
                doc=doc,
1267
                arguments=(ctx, " {}".format(choice)),
1268
                idx=i,
1269
1270
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1271
1272
            for i, choice in enumerate(doc["choices"])
        ]
1273

baberabb's avatar
baberabb committed
1274
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1275
1276
1277
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1289
    def higher_is_better(self) -> dict:
1290
1291
1292
1293
1294
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1295
    def aggregation(self) -> dict:
1296
1297
1298
1299
1300
1301
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1302
class PerplexityTask(Task):
1303
1304
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1305
    def has_training_docs(self) -> bool:
1306
1307
        return False

baberabb's avatar
baberabb committed
1308
    def fewshot_examples(self, k: int, rnd) -> List:
1309
1310
1311
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1312
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1313
1314
1315
1316
1317
1318
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1319
    def higher_is_better(self) -> dict:
1320
1321
1322
1323
1324
1325
1326
1327
1328
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1329
    def doc_to_text(self, doc) -> str:
1330
1331
1332
1333
1334
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1335
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1336
1337
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1338
1339
1340
1341
1342
1343
1344
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1345

baberabb's avatar
baberabb committed
1346
    def process_results(self, doc: dict, results: float) -> dict:
1347
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1348
1349
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1350
1351
1352
1353
1354
1355
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1356
    def aggregation(self) -> dict:
1357
1358
1359
1360
1361
1362
1363
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1364
    def count_bytes(cls, doc) -> int:
1365
1366
1367
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1368
    def count_words(cls, doc) -> int:
1369
1370
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))