task.py 49.4 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    get_aggregation,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
55
    task_alias: str = None
56
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
57
    group_alias: Union[str, list] = None
58
59
60
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
61
62
    dataset_path: str = None
    dataset_name: str = None
63
    dataset_kwargs: dict = None
64
65
66
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
67
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
68
69
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
70
    process_docs: Callable = None
71
72
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
74
    process_results: Union[Callable, str] = None
75
    use_prompt: str = None
76
    description: str = ""
77
78
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
79
    fewshot_config: dict = None
80
    # runtime configuration options
81
    num_fewshot: int = 0
82
    # scoring options
83
    metric_list: list = None
84
    output_type: str = "generate_until"
85
    generation_kwargs: dict = None
86
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
87
    filter_list: Union[str, list] = None
88
89
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
90

lintangsutawika's avatar
lintangsutawika committed
91
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
92

Ethan Smith's avatar
Ethan Smith committed
93
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
94
        if self.dataset_path and ("." in self.dataset_path):
lintangsutawika's avatar
lintangsutawika committed
95
96
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
97

lintangsutawika's avatar
lintangsutawika committed
98
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
99

Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
                )
105
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
118
                    "until": None
119
120
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
121
122
                    "do_sample": False,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
180
    ) -> None:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
207
208
209
210
211
212
213
214
215
216
        self._config = (
            TaskConfig(
                {
                    **config,
                    **{"dataset_path": DATASET_PATH, "dataset_name": DATASET_NAME},
                }
            )
            if config
            else TaskConfig()
        )
217

lintangsutawika's avatar
lintangsutawika committed
218
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
219
220


Ethan Smith's avatar
Ethan Smith committed
221
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
246
247
248
249
250
251
252
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
253

254
255
256
257
258
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

295
296
297
298
299
300
301
302
303
304
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
305
            eval_logger.warning(
306
                "has_training_docs and has_validation_docs are False"
307
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
308
            )
309
310
            return self.test_docs()

311
312
313
314
315
316
317
318
319
320
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
335
    def doc_to_decontamination_query(self, doc) -> None:
336
337
338
339
340
341
342
343
344
345
346
347
348
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
349
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
350
351
352
353
354
355
356
357
358
359
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

360
        eval_logger.info(
lintangsutawika's avatar
lintangsutawika committed
361
            f"Building contexts for task on rank {rank}..."
362
363
        )

364
        instances = []
365
366
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
367
        ):
368
            # sample fewshot context #TODO: need to offset doc_id by rank now!
369
            fewshot_ctx = self.fewshot_context(
370
                doc,
371
                self.config.num_fewshot,
372
            )
373

374
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
375
376
377
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
378
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
379
            )
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
405
            The number of times each instance in a dataset is inferred on. Defaults to 1,
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
441
442
443
444
445
446
447
448
449
450
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

451
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
452
453
454
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=random.Random(1234), description=None
    ):
455
456
457
458
459
460
461
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
462
463
464
465
466
467
468
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
469
470
471
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
        assert not provide_description, (
            "The `provide_description` arg will be removed in future versions. To prepend "
            "a custom description to the context, supply the corresponding string via the "
            "`description` arg."
        )
        if provide_description is not None:
            # nudge people to not specify it at all
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )

        description = description + "\n\n" if description else ""
487
488

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
489
            labeled_examples = ""
490
        else:
lintangsutawika's avatar
lintangsutawika committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
515
            )
516
517

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
518
        return description + labeled_examples + example
519
520

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
521
522
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
523
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
524
525
526
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
527

baberabb's avatar
baberabb committed
528
    def dump_config(self) -> dict:
529
        """Returns a dictionary representing the task's config.
530
531
532
533
534

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
535
        # (num_fewshot)
536
        return self.config.to_dict()
537

538
539

class ConfigurableTask(Task):
540
    VERSION = "Yaml"
541
    OUTPUT_TYPE = None
542
    CONFIG = None
543
544
545

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
546
    ) -> None:  # TODO no super() call here
547
        # Get pre-configured attributes
548
        self._config = self.CONFIG
549

550
        # Use new configurations if there was no preconfiguration
551
        if self.config is None:
552
            self._config = TaskConfig(**config)
553
554
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
555
            if config is not None:
556
                self._config.__dict__.update(config)
557

558
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
559
560
561
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
562

563
564
565
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
566

567
568
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
569

570
571
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
572

573
574
575
576
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
577

578
        if self.config.metric_list is None:
579
            # TODO: handle this in TaskConfig.__post_init__ ?
580
581
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

582
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
583
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
584
                self._metric_fn_kwargs[metric_name] = {}
585
586
587
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
588
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
589
        else:
590
            for metric_config in self.config.metric_list:
591
592
593
594
595
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
596
597
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
598
                }
Chris's avatar
Chris committed
599
600
601
602
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
603

604
                if self.config.process_results is not None:
605
606
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
607
608
609
610
611
612
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
613
614
615
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
616
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
617

618
                if "aggregation" in metric_config:
619
                    agg_name = metric_config["aggregation"]
620
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
621
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
622
623
624
625
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
626
                else:
627
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
628
                    metric_agg = get_metric_aggregation(metric_name)
629
                    eval_logger.warning(
baberabb's avatar
baberabb committed
630
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
631
632
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
633
                    )
634
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
635

636
637
638
639
640
641
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
642
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
643
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
644
                        f"higher_is_better={is_higher_better(metric_name)}"
645
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
646
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
647

648
        self.download(self.config.dataset_kwargs)
649
650
651
        self._training_docs = None
        self._fewshot_docs = None

652
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
653
            self._filters = []
654
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
655
656
657
658
659
660
661
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
662
663
664
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
665
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
666
        else:
667
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
668

669
670
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
671
            self.prompt = get_prompt(
672
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
673
            )
674
675
676
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
677
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
678
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
679
680
681
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
682
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
683

684
        if self.has_test_docs():
685
            self.task_docs = self.test_docs()
686
        elif self.has_validation_docs():
687
            self.task_docs = self.validation_docs()
688
689
690
691
692
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

693
        # Test One Doc
694
        self.features = list(self.task_docs.features.keys())
695
696
        self.multiple_input = 0
        self.multiple_target = 0
697
        test_doc = self.task_docs[0]
698
        test_text = self.doc_to_text(test_doc)
699
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
700

701
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
702
703
704
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
705
706
            else:
                num_choice = len(test_choice)
707

708
709
            if type(test_text) is int:
                self.multiple_input = num_choice
710
711
        else:
            test_choice = None
712

713
        if type(test_target) is list:
714
            self.multiple_target = len(test_target)
715
        else:
lintangsutawika's avatar
lintangsutawika committed
716
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
717
                test_target = test_choice[test_target]
718
            else:
lintangsutawika's avatar
lintangsutawika committed
719
                test_target = str(test_target)
720

721
722
723
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
724
            check_choices = [test_target]
725
726
727
728
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
729
730
                    True
                    if self.config.target_delimiter.rstrip()
731
                    != self.config.target_delimiter
732
                    else False
733
                )
734

735
736
737
738
739
740
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
741
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
742
743
                    )

Ethan Smith's avatar
Ethan Smith committed
744
    def download(self, dataset_kwargs=None) -> None:
745
746
747
748
749
750
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
751
    def has_training_docs(self) -> bool:
752
        if self.config.training_split is not None:
753
754
755
756
            return True
        else:
            return False

baberabb's avatar
baberabb committed
757
    def has_validation_docs(self) -> bool:
758
        if self.config.validation_split is not None:
759
760
761
762
            return True
        else:
            return False

baberabb's avatar
baberabb committed
763
    def has_test_docs(self) -> bool:
764
        if self.config.test_split is not None:
765
766
767
768
            return True
        else:
            return False

baberabb's avatar
baberabb committed
769
    def training_docs(self) -> datasets.Dataset:
770
        if self.has_training_docs():
771
772
773
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
774
                )
775
            return self.dataset[self.config.training_split]
776

baberabb's avatar
baberabb committed
777
    def validation_docs(self) -> datasets.Dataset:
778
        if self.has_validation_docs():
779
780
781
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
782
                )
783
            return self.dataset[self.config.validation_split]
784

baberabb's avatar
baberabb committed
785
    def test_docs(self) -> datasets.Dataset:
786
        if self.has_test_docs():
787
788
789
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
790

791
    def fewshot_docs(self):
792
793
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
794
        else:
795
            if self.config.num_fewshot > 0:
796
                eval_logger.warning(
797
                    f"Task '{self.config.task}': "
798
799
800
801
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
802

lintangsutawika's avatar
lintangsutawika committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)


838
839
840
841
842
843
844
845
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

846
    def should_decontaminate(self):
847
        return self.config.should_decontaminate
848
849

    def doc_to_decontamination_query(self, doc):
850
851
852
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
853
854
            else:
                return ast.literal_eval(
855
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
856
                )
857

858
859
860
861
862
863
864
865
866
867
868
869
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
870
871
        if self.prompt is not None:
            doc_to_text = self.prompt
872
        else:
873
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
874

875
876
877
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
878
            if doc_to_text in self.features:
879
                # if self.config.doc_to_choice is not None:
880
881
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
882
883
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
884
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
885
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
886
887
888
                    return ast.literal_eval(text_string)
                else:
                    return text_string
889
        elif callable(doc_to_text):
890
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
891
        # Used when applying a Promptsource template
892
        elif hasattr(doc_to_text, "apply"):
893
894
895
896
897
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
898
                return self.config.fewshot_delimiter
899
        else:
900
            print(type(doc_to_text))
901
            raise TypeError
902

903
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
904
905
        if self.prompt is not None:
            doc_to_target = self.prompt
906
        else:
907
            doc_to_target = self.config.doc_to_target
908

909
910
911
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
912
            if doc_to_target in self.features:
913
                # if self.config.doc_to_choice is not None:
914
915
916
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
917
            else:
lintangsutawika's avatar
lintangsutawika committed
918
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
919
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
920
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
921
922
923
924
925
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
926
927
928
929
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
930
931
                else:
                    return target_string
932
933
        elif type(doc_to_target) == list:
            return doc_to_target
934
        elif callable(doc_to_target):
935
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
936
        # Used when applying a Promptsource template
937
        elif hasattr(doc_to_target, "apply"):
938
            applied_prompt = doc_to_target.apply(doc)
939
940
941
942
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
943
                return self.config.fewshot_delimiter
944
945
        else:
            raise TypeError
946

baberabb's avatar
baberabb committed
947
    def doc_to_choice(self, doc: Any) -> List[str]:
948
949
        if self.prompt is not None:
            doc_to_choice = self.prompt
950
        elif self.config.doc_to_choice is None:
951
952
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
953
            doc_to_choice = self.config.doc_to_choice
954
955
956
957
958
959
960
961
962
963
964
965
966

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
967

baberabb's avatar
baberabb committed
968
969
970
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
971
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
972
            arguments = (ctx, self.doc_to_target(doc))
973
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
974
            arguments = (self.doc_to_target(doc),)
975
        elif self.OUTPUT_TYPE == "multiple_choice":
976
            choices = self.doc_to_choice(doc)
977
            target_delimiter = self.config.target_delimiter
978
979
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
980
                cont = self.doc_to_target(doc)
981
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
982
            else:
983
                # Otherwise they are placed in the continuation
984
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
985

986
            request_list = [
987
988
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
989
                    doc=doc,
990
                    arguments=arg,
991
                    idx=i,
992
993
                    **kwargs,
                )
994
                for i, arg in enumerate(arguments)
995
            ]
996
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
997
            if "acc_mutual_info" in self._metric_fn_list.keys():
998
999
1000
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1001
                # here mutual info refers to calculating
1002
1003
1004
1005
1006
1007
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1008
                            doc=doc,
1009
                            arguments=("", "{}".format(choice)),
1010
1011
1012
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1013
                        for i, choice in enumerate(choices)
1014
1015
1016
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1017

1018
        elif self.OUTPUT_TYPE == "generate_until":
1019
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1020
1021

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1022
1023
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1024
1025

    def process_results(self, doc, results):
1026
1027
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1028

1029
        result_dict = {}
1030
        use_metric = list(self._metric_fn_list.keys())
1031
1032
1033
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1034
1035
1036
1037
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1038
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1039
            (loglikelihood,) = results
1040
1041
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1042
            return {
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1058
            }
1059
        elif self.OUTPUT_TYPE == "multiple_choice":
1060
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1061

1062
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1063
            choices = self.doc_to_choice(doc)
1064
1065
            completion_len = np.array([float(len(i)) for i in choices])

1066
1067
            if (
                2 * len(choices) == len(lls)
1068
                and "acc_mutual_info" in self._metric_fn_list.keys()
1069
1070
1071
1072
1073
1074
1075
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1076

1077
1078
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1079

1080
1081
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1082
            else:
1083
                gold = self.doc_to_target(doc)
1084
1085
1086

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1087
1088
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1089
1090
1091
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1092
                    gold = gold if gold < len(choices) else -100
1093
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1094
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1095

Lintang Sutawika's avatar
Lintang Sutawika committed
1096
                if gold == -100:
1097
1098
1099
1100
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1101
                    f"Label index was not in within range of available choices,"
1102
1103
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1104

1105
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1106
1107
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1108
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1109
1110
1111
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1112
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1113
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1114
1115

            result_dict = {
1116
                **({"acc": acc} if "acc" in use_metric else {}),
1117
1118
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1119
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1120
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1121
1122
            }

1123
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1124
1125
1126
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1127
1128
1129
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1130
        elif self.OUTPUT_TYPE == "generate_until":
1131
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1132
            result = results[0]
1133
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1134
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1135
                # it assumes that doc_to_target returns a number.
1136
1137
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1138
1139
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1140
                gold = list(gold)
Chris's avatar
Chris committed
1141
1142
1143
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1144

lintangsutawika's avatar
lintangsutawika committed
1145
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1146
1147
1148
1149
1150
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1151
1152
1153
1154
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1155
                    for gold_option in gold:
1156
                        try:
1157
                            result_score = self._metric_fn_list[metric](
1158
1159
                                references=[gold_option],
                                predictions=[result],
1160
                                **self._metric_fn_kwargs[metric],
1161
                            )
baberabb's avatar
baberabb committed
1162
1163
1164
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1165
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1166
1167
1168
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1169
                            # TODO: this handles the case where HF evaluate returns a dict.
1170
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1171
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1172
                    if any(scores):
1173
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1174
                    else:
1175
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1176
                else:
1177
                    try:
1178
                        result_score = self._metric_fn_list[metric](
1179
1180
                            references=[gold],
                            predictions=[result],
1181
                            **self._metric_fn_kwargs[metric],
1182
                        )
baberabb's avatar
baberabb committed
1183
1184
1185
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1186
                        result_score = self._metric_fn_list[metric]([gold, result])
1187
1188
1189
1190
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1191
        else:
lintangsutawika's avatar
lintangsutawika committed
1192
1193
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1194
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1195
            )
1196
1197
1198
1199
1200
1201
1202

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1203
        return self._higher_is_better
1204
1205
1206
1207
1208


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1209
    def doc_to_target(self, doc: dict) -> str:
1210
1211
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1212
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1213
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1214
1215
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1216
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1217
                doc=doc,
1218
                arguments=(ctx, " {}".format(choice)),
1219
                idx=i,
1220
1221
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1222
1223
            for i, choice in enumerate(doc["choices"])
        ]
1224

baberabb's avatar
baberabb committed
1225
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1226
1227
1228
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1240
    def higher_is_better(self) -> dict:
1241
1242
1243
1244
1245
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1246
    def aggregation(self) -> dict:
1247
1248
1249
1250
1251
1252
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1253
class PerplexityTask(Task):
1254
1255
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1256
    def has_training_docs(self) -> bool:
1257
1258
        return False

baberabb's avatar
baberabb committed
1259
    def fewshot_examples(self, k: int, rnd) -> List:
1260
1261
1262
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1263
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1264
1265
1266
1267
1268
1269
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1270
    def higher_is_better(self) -> dict:
1271
1272
1273
1274
1275
1276
1277
1278
1279
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1280
    def doc_to_text(self, doc) -> str:
1281
1282
1283
1284
1285
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1286
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1287
1288
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1289
1290
1291
1292
1293
1294
1295
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1296

baberabb's avatar
baberabb committed
1297
    def process_results(self, doc: dict, results: float) -> dict:
1298
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1299
1300
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1301
1302
1303
1304
1305
1306
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1307
    def aggregation(self) -> dict:
1308
1309
1310
1311
1312
1313
1314
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1315
    def count_bytes(cls, doc) -> int:
1316
1317
1318
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1319
    def count_words(cls, doc) -> int:
1320
1321
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))