task.py 30.3 KB
Newer Older
1
2
3
4
import abc
from dataclasses import dataclass

import re
5
import ast
6
7
8
import evaluate
import random
import itertools
9
import functools
10
11
12
13

import datasets
import numpy as np

14
15
from typing import List, Union

16
17
from lm_eval.api.metrics import METRIC_REGISTRY, AGGREGATION_REGISTRY
from lm_eval.api import HIGHER_IS_BETTER_REGISTRY
haileyschoelkopf's avatar
haileyschoelkopf committed
18
from lm_eval.api.instance import Instance
haileyschoelkopf's avatar
haileyschoelkopf committed
19
from lm_eval.api.metrics import get_metric, get_aggregation, mean, weighted_perplexity, bits_per_byte
20
from lm_eval import utils
21
from lm_eval.prompts import get_prompt
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

from lm_eval.filters import build_filter_ensemble
from lm_eval.api import samplers


@dataclass
class TaskConfig(dict):

    task_name: str = None
    dataset_path: str = None
    dataset_name: str = None
    training_split: str = None
    validation_split: str = None
    test_split: str = None
    fewshot_split: str = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    
38
    template_aliases: str = "" 
haileyschoelkopf's avatar
haileyschoelkopf committed
39
40
    doc_to_text: str = ""
    doc_to_target: str = ""
41

42

43
44
    num_fewshot: int = 0
    batch_size: int = 1
45
46
    repeats: int = 1

47
48
49
50
51
52
    metric_list: str = None
    gold_alias: str = None
    output_type: str = "greedy_until"
    delimiter: str = "\n\n"
    filters: str = None #TODO: need to make this typehint `list`?
    normalization: str = None # TODO: add length-normalization of various types, mutual info
53
54
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
55
    use_prompt: str = None
56

57
58
59
60
61
62
63
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
        self.doc_to_text = self.template_aliases + self.doc_to_text
        self.doc_to_target = self.template_aliases + self.doc_to_target

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    def __getitem__(self, item):
        return getattr(self, item)


class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
121
        self._config = TaskConfig(**config) if config else TaskConfig()
122
123
124
125
126
127
128

        if not hasattr(self, "_filters"):
            self._filters = []
            for name, components in self._config.get("filters", [["none", ["take_first"]]]):
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

129
130
 
        self.sampler = samplers.Sampler(self.fewshot_docs(), self, rnd=random.Random()) # TODO: pass the correct docs in here
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

201
202
203
204
205
206
207
208
209
210
211
212
213
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
            # TODO: should we allow this case to occur? / should raise a warning here
            return self.test_docs()

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

    def build_all_requests(self, limit=None):
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
        for doc_id, doc in enumerate(itertools.islice(docs, 0, limit) if limit else docs):
            # sample fewshot context
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )

            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
            inst = self.construct_requests(doc=doc, ctx=fewshot_ctx, metadata=(self._config["task_name"], doc_id, 2))

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)
            

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
            The number of times each instance in a dataset is inferred on. Defaults to 1, 
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
334
335
336
337
338
339
340
341
342
343
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
            labeled_examples = ""
        else:

367
            labeled_examples = self.sampler.get_context(doc, self._config.num_fewshot)
368
369

            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
            # if self.has_training_docs():
            #     fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            # else:
            #     if self._fewshot_docs is None:
            #         self._fewshot_docs = list(
            #             self.validation_docs()
            #             if self.has_validation_docs()
            #             else self.test_docs()
            #         )

            #     fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

            #     # get rid of the doc that's the one we're evaluating, if it's in the fewshot
            #     fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            # labeled_examples = (
            #     "\n\n".join(
            #         [
            #             self.doc_to_text(doc) + self.doc_to_target(doc)
            #             for doc in fewshotex
            #         ]
            #     )
            #     + "\n\n"
            # )
394
395
396
397
398
399
400
401
402
403
404
405
406

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

        for f in self._filters:
            f.apply(self._instances)


class ConfigurableTask(Task):

    VERSION = "2.0"
407
    OUTPUT_TYPE = None
408
409
410
411
412
413

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):

        self._config = TaskConfig(**config)
414
415
416
417

        if self._config.output_type is not None:
            self.OUTPUT_TYPE = self._config.output_type

418
419
420
421
422
423
424
425
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

        if self._config.metric_list is not None:
            self._metric_list = {}
426
            self._metric_kwargs = {}
427
428
            self._aggregation_list = {}
            self._higher_is_better = {}
lintangsutawika's avatar
lintangsutawika committed
429
            for metric_config in self._config.metric_list:
430

431
                metric_name = metric_config['metric']
lintangsutawika's avatar
lintangsutawika committed
432
433
                aggregation = metric_config['aggregation']
                higher_is_better = metric_config['higher_is_better']
434
                kwargs = {key: metric_config[key] for key in metric_config if key not in ['metric', 'aggregation', 'higher_is_better']}
435

lintangsutawika's avatar
lintangsutawika committed
436
                self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[aggregation]
haileyschoelkopf's avatar
haileyschoelkopf committed
437

lintangsutawika's avatar
lintangsutawika committed
438
439
                if metric_name in METRIC_REGISTRY.keys():
                    self._metric_list[metric_name] = METRIC_REGISTRY[metric_name]
440
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
441
                else:
442
                    self._higher_is_better[metric_name] = higher_is_better
lintangsutawika's avatar
lintangsutawika committed
443
444
445
446
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_list[metric_name] = metric_object
                        self._metric_kwargs[metric_name] = kwargs
haileyschoelkopf's avatar
haileyschoelkopf committed
447

lintangsutawika's avatar
lintangsutawika committed
448
449
450
451
452
                    except Exception as ex:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
453
454
455
456
457
458
459
460
461
462

        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None

        
        self._filters = []
        for name, components in self._config.get("filters", [["none", ["take_first"]]]):
            filter_pipeline = build_filter_ensemble(name, components)
            self._filters.append(filter_pipeline)
463
464
        
        self.sampler = samplers.Sampler(list(self.fewshot_docs()), self, rnd=random.Random()) # TODO: pass the correct docs in here
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

496
497
498
499
500
501
502
    def fewshot_docs(self):
        if self._config.fewshot_split:
            return self.dataset[self._config.fewshot_split]
        else:
            # TODO: warn user if fewshot split isn't explicitly set
            return super().fewshot_docs()

503
504
505
506
507
508
509
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

510
511
512
513
514
515
516
517
518
519
520
521
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
522
523
524
525
526
        if self._config.use_prompt is not None:
            doc_to_text = get_prompt(self._config.use_prompt)
        else:
            doc_to_text = self._config.doc_to_text
        return utils.apply_template(doc_to_text, doc)
527
528
529
530
531
532

    def doc_to_target(self, doc):
        return utils.apply_template(self._config.doc_to_target, doc)

    def construct_requests(self, doc, ctx, **kwargs):

533
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
534
            arguments=(ctx, self.doc_to_target(doc))
535
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
536
            arguments=(self.doc_to_target(doc),)
537
        elif self.OUTPUT_TYPE == "multiple_choice":
538
539
540
541
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
            choices = ast.literal_eval(utils.apply_template(self._config.template_aliases + "{{answer_choices}}", doc))
            request_list = [
542
543
544
545
                Instance(
                    request_type="loglikelihood",
                    doc=doc, 
                    arguments=(ctx, " {}".format(choice)),
546
                    idx=i,
547
548
                    **kwargs,
                )
549
                for i, choice in enumerate(choices) 
550
            ]
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating 
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
                            doc=doc, 
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
                        for i, choice in enumerate(choices) 
                    ]
                )
            return request_list
            
573
        elif self.OUTPUT_TYPE == "greedy_until":
574
            arguments=(ctx, self._config.delimiter)
lintangsutawika's avatar
lintangsutawika committed
575
576

        return Instance(
577
            request_type=self.OUTPUT_TYPE,
lintangsutawika's avatar
lintangsutawika committed
578
579
            doc=doc,
            arguments=arguments,
580
            idx=0,
lintangsutawika's avatar
lintangsutawika committed
581
582
            **kwargs
            )
583
584
585
586

    def process_results(self, doc, results):

        result_dict = {}
587
588
589
590
591
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
            result_dict = {"perplexity": ll, "accuracy": int(is_greedy)}
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
592
593
594
595
596
597
598
599
            (loglikelihood,) = results
            words = self.count_words(self.doc_to_target(doc))
            bytes_ = self.count_bytes(self.doc_to_target(doc))
            return {
                "word_perplexity": (loglikelihood, words),
                "byte_perplexity": (loglikelihood, bytes_),
                "bits_per_byte": (loglikelihood, bytes_),
            }
600
        elif self.OUTPUT_TYPE == "multiple_choice":
601
            lls = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy
haileyschoelkopf's avatar
haileyschoelkopf committed
602
            gold = int(self.doc_to_target(doc))
603
604
605
606
607
608
609
610
611
            # retrieve choices in List[str] form, to compute choice lengths, etc.
            choices = ast.literal_eval(utils.apply_template(self._config.template_aliases + "{{answer_choices}}", doc))
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in self._metric_list.keys():
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
612
613

            acc = 1.0 if np.argmax(lls) == gold else 0.0
614
615
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
616
617
618
619

            result_dict = {
                "acc": acc,
                "acc_norm": acc_norm,
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            }

            # TODO: set which normalization metrics should be reported, and calculate them
            # TODO: add mutual info.

            if "exact_match" in self._metric_list.keys():
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
                is_greedy = [res[1] for res in results] # take only the `is_greedy` results
                is_greedy = is_greedy[gold] # take value for the gold answer
                result_dict["exact_match"] = int(is_greedy)

            if "acc_mutual_info" in self._metric_list.keys():
                lls_mutual_info = [ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)]
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

636
637
638
639
640
641
642
643
644
645
646
647
648
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
                gold = doc[self._config.gold_alias]
            else:
                gold = self.doc_to_target(doc)

            for key, result in zip(self._metric_list.keys(), results):
                _dict = self._metric_list[key].compute(
                    references=[gold],
                    predictions=[result],
                    **self._metric_kwargs[key]
                )
649

650
                result_dict[key] = _dict[key]
651
652
653
654
        else:
            raise ValueError(f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ", 
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until'"
            )
655
656
657
658
659
660
661

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
662
        return self._higher_is_better
663
664
665
666
667
668
669
670
671
672
673


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
        
haileyschoelkopf's avatar
haileyschoelkopf committed
674
675
        return [Instance(
                request_type="loglikelihood",
676
677
                doc=doc, 
                arguments=(ctx, " {}".format(choice)),
678
                idx=i,
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
                **kwargs,
            )
            for i, choice in enumerate(doc["choices"])]

    def process_results(self, doc, results):
        results = [res[0] for res in results] # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere? 
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


class PerplexityTask(Task, abc.ABC):

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

    def fewshot_context(
        self, doc, num_fewshot, rnd=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

751
        return Instance(request_type=self.OUTPUT_TYPE, doc=doc, arguments=(self.doc_to_target(doc),), idx=0, **kwargs)
752
753
754

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
755
756
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))
778
779
780
781
782
783
784


# TODO: confirm we want this to go in this file

TASK_REGISTRY = {}
ALL_TASKS = []

785
786
787
def register_task(*names):
    # either pass a list or a single alias.
    # function receives them as a tuple of strings
788
789

    def decorate(cls):
790
791
792
793
        for name in names:
            assert (
                issubclass(cls, Task)
            ), f"Task '{name}' ({cls.__name__}) must extend Task class"
794

795
796
797
            assert (
                name not in TASK_REGISTRY
            ), f"Task named '{name}' conflicts with existing task! Please register with a non-conflicting alias instead."
798

799
800
            TASK_REGISTRY[name] = cls
            ALL_TASKS = sorted(list(TASK_REGISTRY)) # TODO: this doesn't seem to import right.
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
        return cls
    
    return decorate


##### Task registry utils and setup.
# ALL_TASKS = sorted(list(TASK_REGISTRY))


def get_task(task_name):
    try:
        return TASK_REGISTRY[task_name]
    except KeyError:
        print("Available tasks:")
        pprint(TASK_REGISTRY)
        raise KeyError(f"Missing task {task_name}")


def get_task_name_from_object(task_object):
    for name, class_ in TASK_REGISTRY.items():
        if class_ is task_object:
            return name

haileyschoelkopf's avatar
haileyschoelkopf committed
824
    # TODO: scrap this
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    # this gives a mechanism for non-registered tasks to have a custom name anyways when reporting
    return (
        task_object.EVAL_HARNESS_NAME
        if hasattr(task_object, "EVAL_HARNESS_NAME")
        else type(task_object).__name__
    )


def get_task_name_from_config(task_config):
    return "configurable_{dataset_path}_{dataset_name}".format(**task_config)


def get_task_dict(task_name_list: List[Union[str, dict, Task]], num_fewshot=None): # TODO: pass num_fewshot and other cmdline overrides in a better way
    task_name_dict = {
        task_name: get_task(task_name)(config={"num_fewshot": num_fewshot if num_fewshot else 0, "task_name": task_name})
        for task_name in task_name_list
        if isinstance(task_name, str)
    }
    task_name_from_config_dict = {
        get_task_name_from_config(task_config): ConfigurableTask(
            config=task_config
        )
        for task_config in task_name_list
        if isinstance(task_config, dict)
    }
    task_name_from_object_dict = {
        get_task_name_from_object(task_object): task_object
        for task_object in task_name_list
        if isinstance(task_object, Task)
    }
    assert set(task_name_dict.keys()).isdisjoint(set(task_name_from_object_dict.keys()))
    return {
        **task_name_dict,
        **task_name_from_config_dict,
        **task_name_from_object_dict,
    }