task.py 78.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
import re
Baber's avatar
test  
Baber committed
6
from collections import defaultdict
7
from collections.abc import Callable
8
from copy import deepcopy
9
from dataclasses import asdict, dataclass
10
from inspect import getsource
11
12
13
14
15
16
17
18
19
20
21
22
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
23
24
25

import datasets
import numpy as np
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
from lm_eval.api.instance import Instance, OutputType
Baber's avatar
Baber committed
31
32
33
34
35
36
from lm_eval.api.metrics import (
    bits_per_byte,
    mean,
    stderr_for_metric,
    weighted_perplexity,
)
lintangsutawika's avatar
lintangsutawika committed
37
from lm_eval.api.registry import (
38
39
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
40
    get_aggregation,
41
    get_metric,
42
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
43
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
44
)
45
from lm_eval.caching.cache import load_from_cache, save_to_cache
46
47
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt
Baber's avatar
Baber committed
48
from lm_eval.utils import create_sample_log, pass_at_k
49

50

51
52
53
54
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
55
    "generate_until",
56
57
]

Lintang Sutawika's avatar
Lintang Sutawika committed
58
eval_logger = logging.getLogger(__name__)
59

lintangsutawika's avatar
lintangsutawika committed
60

61
62
@dataclass
class TaskConfig(dict):
63
    # task naming/registry
64
65
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
66
    tag: Optional[Union[str, list]] = None
67
68
69
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
70
    custom_dataset: Optional[Callable] = None
71
72
73
74
75
76
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
77
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
78
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
79
    )
80
81
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
82
83
84
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
85
    doc_to_image: Union[Callable, str] = None
86
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
87
    unsafe_code: bool = False
88
89
90
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
91
    description: str = ""
92
93
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
94
    fewshot_config: Optional[dict] = None
95
    # runtime configuration options
96
    num_fewshot: Optional[int] = None
97
    # scoring options
98
99
100
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
101
    repeats: int = 1
102
    filter_list: Optional[Union[str, list]] = None
103
    should_decontaminate: bool = False
104
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
105
    gen_prefix: Optional[str] = None
106
    repeat_agg: Optional[str] = None
107
108
109
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
110

Ethan Smith's avatar
Ethan Smith committed
111
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
112
        if self.generation_kwargs is not None:
113
            if self.output_type != "generate_until":
114
                eval_logger.warning(
115
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
120
121
122
123
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
124
125
126
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
127
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
128
        else:
129
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
130
131
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
132
133
134
135
136
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
137
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
138
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
139
                }
Baber Abbasi's avatar
Baber Abbasi committed
140
141
142
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
143

144
145
146
    def __getitem__(self, item):
        return getattr(self, item)

147
148
149
    def __setitem__(self, item, value):
        return setattr(self, item, value)

150
    def to_dict(self, keep_callable: bool = False) -> dict:
151
152
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
153
        Used for dumping results alongside full task configuration
154

haileyschoelkopf's avatar
haileyschoelkopf committed
155
156
157
158
159
160
161
162
163
164
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
165
166
167
168
169
170
171
172
173
174
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
175
        return cfg_dict
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

193
194
195
196
197
198
199
200
201
202
203

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

204
    VERSION: Optional[Union[int, str]] = None
205

206
207
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
208
    DATASET_PATH: Optional[str] = None
209
210

    # The name of a subset within `DATASET_PATH`.
211
    DATASET_NAME: Optional[str] = None
212

213
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
214

215
216
    def __init__(
        self,
217
218
219
220
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
221
    ) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
244
245
246
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
247

248
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
249

lintangsutawika's avatar
lintangsutawika committed
250
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
251
252
253
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
254

255
256
257
258
259
260
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
285
286
287
288
289
290
291
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
292

293
    @property
294
    def config(self) -> TaskConfig:
295
296
297
        """Returns the TaskConfig associated with this class."""
        return self._config

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

313
    def training_docs(self) -> Iterable:
314
315
316
317
318
319
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

320
    def validation_docs(self) -> Iterable:
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

327
    def test_docs(self) -> Iterable:
328
329
330
331
332
333
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

334
    def fewshot_docs(self) -> Iterable:
335
336
337
338
339
340
341
342
343
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
344
345
346
347
348
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
349
350
            return self.test_docs()

351
    def _process_doc(self, doc: dict) -> dict:
352
353
354
355
356
357
358
359
360
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
361

362
    @property
363
    def instances(self) -> List[Instance]:
364
365
366
367
368
369
370
371
372
373
374
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

375
376
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
377
378
379
380
381
382
383
384
385
386
387
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

388
389
390
391
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

392
393
394
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
395
396
397
    def doc_to_prefix(self, doc):
        return ""

398
399
    def build_all_requests(
        self,
400
        *,
401
        limit: Union[int, None] = None,
402
        samples: Optional[List[int]] = None,
403
404
405
406
407
408
409
410
411
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
412
    ) -> None:
413
        """Build a set of Instances for a task, and store them in task.instances"""
414
415
416
417

        # used with caching
        og_limit = limit

418
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
419
420
421
422
423
424
425
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
426
        cache_key += f"-tokenizer{tokenizer_name}"
427

Baber Abbasi's avatar
Baber Abbasi committed
428
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
429
430
431
432
433
434
435
436
437
438
439
440
441

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
442
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
443

444
        instances = []
445
446
447
448
449
450
451
452
453
454

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
455
456
457
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
458
459
460
461
462
463
464
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
465
        ):
466
            # sample fewshot context #TODO: need to offset doc_id by rank now!
467
            fewshot_ctx = self.fewshot_context(
468
                doc,
469
470
471
472
473
474
475
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
476
                gen_prefix=self.doc_to_prefix(doc),
477
            )
478

479
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
480
481
482
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
483
                metadata=(self.config["task"], doc_id, self.config.repeats),
484
                apply_chat_template=apply_chat_template,
485
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
486
            )
487
488
489
490

            if not isinstance(inst, list):
                inst = [inst]

491
492
493
494
495
496
497
498
499
500
501
502
503
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
504

505
506
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
507

508
509
510
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
527
            The number of times each instance in a dataset is inferred on. Defaults to 1,
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

563
564
565
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
566
567
568
569
570
571
572
573
574
575
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

576
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
577
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
578
579
580
581
582
583
584
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
585
586
587
588
589
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
590
591
592
        :returns: str
            The fewshot context.
        """
593
        if rnd is None:
594
595
596
597
598
599
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
600

601
        description = description if description else ""
602
603

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
604
            labeled_examples = ""
605
        else:
lintangsutawika's avatar
lintangsutawika committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
630
            )
631
632

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
633
        return description + labeled_examples + example
634

635
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
636
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
637
638
        if hasattr(self, "_filters"):
            for f in self._filters:
639
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
640
641
642
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
643

baberabb's avatar
baberabb committed
644
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
645
        """Returns the config as a dictionary."""
646
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
647
        # (num_fewshot)
648
        return self.config.to_dict()
649

Baber Abbasi's avatar
Baber Abbasi committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

690
691
692
693
694
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

695
696
697
698
699
700
701
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
702
703
704
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
705
706

    def doc_iterator(
707
708
709
710
711
712
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
713
    ) -> Iterator[Tuple[int, Any]]:
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
736
737
        return doc_iterator

738
739

class ConfigurableTask(Task):
740
    VERSION = "Yaml"
741
    OUTPUT_TYPE = None
742
    CONFIG = None
743
744

    def __init__(
745
746
747
748
749
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
750
    ) -> None:  # TODO no super() call here
751
        # Get pre-configured attributes
752
        self._config = self.CONFIG
753

754
        # Use new configurations if there was no preconfiguration
755
        if self.config is None:
756
            self._config = TaskConfig(**config)
757
758
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
759
            if config is not None:
760
                self._config.__dict__.update(config)
761

762
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
763
764
765
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
766

767
768
769
770
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

771
        if self.config.output_type is not None:
772
773
774
775
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
776
            self.OUTPUT_TYPE = self.config.output_type
777

778
779
780
781
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

782
783
784
785
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
786
787
788
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

789
790
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
791

792
793
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
794

Baber's avatar
Baber committed
795
796
        self.metric_results = []

797
798
799
800
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
801

802
        if self.config.metric_list is None:
803
            # TODO: handle this in TaskConfig.__post_init__ ?
804
805
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

806
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
807
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
808
                self._metric_fn_kwargs[metric_name] = {}
809
810
811
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
812
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
813
        else:
814
            for metric_config in self.config.metric_list:
815
816
817
818
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
819
820
821
822
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
823
824
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
825
                }
Chris's avatar
Chris committed
826
827
828
829
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
830

831
                if self.config.process_results is not None:
832
833
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
834
835
836
837
838
839
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
840
841
842
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
843
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
844

845
                if "aggregation" in metric_config:
846
                    agg_name = metric_config["aggregation"]
847
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
848
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
849
                    elif callable(agg_name):  # noqa: E721
850
851
852
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
853
                else:
854
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
855
                    metric_agg = get_metric_aggregation(metric_name)
856
                    eval_logger.warning(
857
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
858
859
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
860
                    )
861
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
862

863
864
865
866
867
868
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
869
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
870
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
871
                        f"higher_is_better={is_higher_better(metric_name)}"
872
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
873
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
874

875
        self.download(self.config.dataset_kwargs)
876
877
878
        self._training_docs = None
        self._fewshot_docs = None

879
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
880
            self._filters = []
881
            for filter_config in self.config.filter_list:
882
883
884
885
886
887
888
889
890
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
891
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
892
        else:
Baber Abbasi's avatar
Baber Abbasi committed
893
894
895
896
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
897
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
898

899
900
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
901
            self.prompt = get_prompt(
902
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
903
            )
904
905
906
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
907
        if self.fewshot_docs() is not None:
908
909
910
911
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
912
913
914
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
931

932
        self.task_docs = self.eval_docs
933

934
        # Test One Doc
935
        self.features = list(self.task_docs.features.keys())
936
937
        self.multiple_input = 0
        self.multiple_target = 0
938
        test_doc = self.task_docs[0]
939
        test_text = self.doc_to_text(test_doc)
940
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
941

942
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
943
            test_choice = self.doc_to_choice(test_doc)
944
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
945
                eval_logger.error("doc_to_choice must return list")
946
947
            else:
                num_choice = len(test_choice)
948

949
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
950
951
952
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
953
                self.multiple_input = num_choice
954
955
        else:
            test_choice = None
956

957
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
958
959
960
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
961
            self.multiple_target = len(test_target)
962
        else:
963
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
964
                test_target = test_choice[test_target]
965
            else:
lintangsutawika's avatar
lintangsutawika committed
966
                test_target = str(test_target)
967

968
969
970
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
971
            check_choices = [test_target]
972
973
974
975
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
976
977
                    True
                    if self.config.target_delimiter.rstrip()
978
                    != self.config.target_delimiter
979
                    else False
980
                )
981

982
                if delimiter_has_whitespace and choice_has_whitespace:
983
984
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
985
986
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
987
                    eval_logger.debug(
988
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
989
990
                    )

Baber Abbasi's avatar
Baber Abbasi committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1008

baberabb's avatar
baberabb committed
1009
    def has_training_docs(self) -> bool:
1010
        if self.config.training_split is not None:
1011
1012
1013
1014
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1015
    def has_validation_docs(self) -> bool:
1016
        if self.config.validation_split is not None:
1017
1018
1019
1020
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1021
    def has_test_docs(self) -> bool:
1022
        if self.config.test_split is not None:
1023
1024
1025
1026
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1027
    def training_docs(self) -> datasets.Dataset:
1028
        if self.has_training_docs():
1029
1030
1031
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1032
                )
1033
            return self.dataset[self.config.training_split]
1034

baberabb's avatar
baberabb committed
1035
    def validation_docs(self) -> datasets.Dataset:
1036
        if self.has_validation_docs():
1037
1038
1039
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1040
                )
1041
            return self.dataset[self.config.validation_split]
1042

baberabb's avatar
baberabb committed
1043
    def test_docs(self) -> datasets.Dataset:
1044
        if self.has_test_docs():
1045
1046
1047
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1048

1049
    def fewshot_docs(self):
1050
        if self.config.fewshot_split is not None:
1051
1052
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1053
            return self.dataset[self.config.fewshot_split]
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1066
        else:
1067
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1068
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1069
                    f"[Task: {self.config.task}] "
1070
1071
1072
1073
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1074

KonradSzafer's avatar
KonradSzafer committed
1075
1076
1077
1078
1079
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1080
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1081
1082
1083
1084
1085
1086
1087
1088
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1089
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1090
1091
            # if last message is user, append to it to avoid two user messages in a row
            else:
1092
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1093
1094
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1095
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1096
1097
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1098

lintangsutawika's avatar
lintangsutawika committed
1099
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1100
1101
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1102
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1103
1104
1105
1106
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1107
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1108
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1109
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1110
1111
1112
1113
1114
1115
1116
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1117
1118
1119
1120
1121
1122
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1123
1124
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1125
1126
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1127
1128
1129
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1130
1131
1132
1133
1134
1135
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1136
1137
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1138

KonradSzafer's avatar
KonradSzafer committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1148
        else:
KonradSzafer's avatar
KonradSzafer committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1162
1163
1164
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1165
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1166
1167
1168
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1169
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1170
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1171
                )
lintangsutawika's avatar
lintangsutawika committed
1172
1173

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1174
1175
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1176
                # TODO: append prefill?
1177
1178
                if not labeled_examples:
                    return ""
1179
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1180
1181
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1182
1183
1184
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1185
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1186
1187
1188
1189
1190
1191
1192
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1193
1194
1195
1196
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1197
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1198
1199
1200
1201
1202
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1203
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1204
1205
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1206
1207
1208
1209
1210
1211
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1212
1213
1214
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1215
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1216
1217
1218
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1219
1220
1221
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1222
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1223
1224
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1225
1226
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1227
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1228
            )
1229
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1230
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1231
1232
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1233
1234
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1235
1236
            if self.multiple_input:
                return labeled_examples
1237
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1238
                return labeled_examples + example + prefix
1239
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1240
                return [labeled_examples + ex + prefix for ex in example]
1241
1242
1243
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1244
                    return labeled_examples + choices[example] + prefix
1245
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1246
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1247

Baber Abbasi's avatar
Baber Abbasi committed
1248
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1249
        """Iterates over FilterEnsembles and applies them to instances"""
1250
1251
        if hasattr(self, "_filters"):
            for f in self._filters:
1252
                f.apply(self._instances)
1253
1254
1255
1256
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1257
    def should_decontaminate(self):
1258
        return self.config.should_decontaminate
1259

Baber Abbasi's avatar
Baber Abbasi committed
1260
    def doc_to_decontamination_query(self, doc: dict):
1261
        if self.config.should_decontaminate:
1262
1263
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1264
            else:
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1276

1277
    def _process_doc(self, doc: dict) -> dict:
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1288
    def doc_to_text(self, doc, doc_to_text=None):
1289
1290
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1291
1292
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1293
        else:
1294
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1295

1296
        if isinstance(doc_to_text, int):
1297
            return doc_to_text
1298
        elif isinstance(doc_to_text, str):
1299
            if doc_to_text in self.features:
1300
                # if self.config.doc_to_choice is not None:
1301
1302
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1303
1304
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1305
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1306
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1307
1308
1309
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1310
        elif callable(doc_to_text):
1311
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1312
        # Used when applying a Promptsource template
1313
        elif hasattr(doc_to_text, "apply"):
1314
1315
1316
1317
1318
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1319
                return self.config.fewshot_delimiter
1320
        else:
1321
            print(type(doc_to_text))
1322
            raise TypeError
1323

Yu Shi Jie's avatar
Yu Shi Jie committed
1324
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1325
1326
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1327
1328
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1329
        else:
1330
            doc_to_target = self.config.doc_to_target
1331

1332
        if isinstance(doc_to_target, int):
1333
            return doc_to_target
1334
        elif isinstance(doc_to_target, str):
1335
            if doc_to_target in self.features:
1336
                # if self.config.doc_to_choice is not None:
1337
1338
1339
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1340
            else:
lintangsutawika's avatar
lintangsutawika committed
1341
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1342
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1343
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1344
1345
1346
1347
1348
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1349
1350
1351
1352
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1353
1354
                else:
                    return target_string
1355
        elif isinstance(doc_to_target, list):
1356
            return doc_to_target
1357
        elif callable(doc_to_target):
1358
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1359
        # Used when applying a Promptsource template
1360
        elif hasattr(doc_to_target, "apply"):
1361
            applied_prompt = doc_to_target.apply(doc)
1362
1363
1364
1365
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1366
                return self.config.fewshot_delimiter
1367
1368
        else:
            raise TypeError
1369

Yu Shi Jie's avatar
Yu Shi Jie committed
1370
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1371
1372
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1373
1374
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1375
        elif self.config.doc_to_choice is None:
1376
1377
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1378
            doc_to_choice = self.config.doc_to_choice
1379

1380
        if isinstance(doc_to_choice, str):
1381
1382
1383
1384
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1385
        elif isinstance(doc_to_choice, list):
1386
            return doc_to_choice
1387
        elif isinstance(doc_to_choice, dict):
1388
1389
1390
1391
1392
1393
1394
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1395

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1442
1443
1444
1445
1446
1447
1448
1449
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1450
1451
1452
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1453
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1454
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1455

1456
1457
        aux_arguments = None

1458
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1459
            arguments = (ctx, self.doc_to_target(doc))
1460
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1461
            arguments = (self.doc_to_target(doc),)
1462
        elif self.OUTPUT_TYPE == "multiple_choice":
1463
            choices = self.doc_to_choice(doc)
1464
            target_delimiter = self.config.target_delimiter
1465
1466
            if apply_chat_template:
                target_delimiter = ""
1467
1468
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1469
                # apply chat_template to choices if apply_chat_template
1470
                cont = self.doc_to_target(doc)
1471

1472
                arguments = [
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1483
                ]
1484
            else:
1485
                # Otherwise they are placed in the continuation
1486
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1487

1488
1489
1490
1491
1492
1493
1494
1495
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1496
1497
1498
1499
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1500
1501
1502
1503
1504
1505

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

Baber's avatar
Baber committed
1506
1507
1508
1509
1510
1511
1512
        else:
            raise ValueError(
                f"Unsupported OUTPUT_TYPE: '{self.OUTPUT_TYPE}'. "
                f"Expected one of: 'loglikelihood', 'loglikelihood_rolling', "
                f"'multiple_choice', 'generate_until'"
            )

1513
1514
1515
1516
1517
1518
1519
1520
1521
        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1522
1523
1524
1525
1526
1527
1528
1529
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1530
1531
1532
1533
1534
1535
1536
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1537
            request_list = [
1538
1539
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1540
                    doc=doc,
Baber's avatar
Baber committed
1541
1542
                    arguments=arg,
                    # arguments=LoglikelihoodInput(context=arg[0], continuation=arg[1]),
1543
                    idx=i,
1544
1545
                    **kwargs,
                )
1546
                for i, arg in enumerate(arguments)
1547
            ]
1548
1549

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1550

lintangsutawika's avatar
lintangsutawika committed
1551
        return Instance(
1552
1553
            request_type=self.OUTPUT_TYPE,
            doc=doc,
Baber's avatar
Baber committed
1554
1555
1556
            arguments=arguments,
            # if self.OUTPUT_TYPE in ["loglikelihood", "loglikelihood_rolling"]
            # else GenerateInput(*arguments),
1557
1558
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1559
        )
1560
1561

    def process_results(self, doc, results):
1562
1563
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1564

1565
        result_dict = {}
1566
        use_metric = list(self._metric_fn_list.keys())
1567
1568
1569
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1570
1571
1572
1573
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1574
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1575
            (loglikelihood,) = results
1576
1577
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1578
            return {
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1594
            }
1595
        elif self.OUTPUT_TYPE == "multiple_choice":
1596
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1597

1598
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1599
            choices = self.doc_to_choice(doc)
1600
1601
            completion_len = np.array([float(len(i)) for i in choices])

1602
1603
            if (
                2 * len(choices) == len(lls)
1604
                and "acc_mutual_info" in self._metric_fn_list.keys()
1605
1606
1607
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1608
1609
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1610
1611
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1612
                # and this stores our "regular" conditional loglikelihoods
1613
                lls = lls[: len(choices)]
1614

1615
1616
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1617

1618
1619
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1620
            else:
1621
                gold = self.doc_to_target(doc)
1622
1623

            gold_index_error = False
1624
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1625
1626
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1627
1628
                    gold_index_error = True
            else:
1629
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1630
                    gold = gold if gold < len(choices) else -100
1631
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1632
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1633

Lintang Sutawika's avatar
Lintang Sutawika committed
1634
                if gold == -100:
1635
1636
1637
1638
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1639
                    f"Label index was not in within range of available choices,"
1640
1641
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1642

1643
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1644
1645
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1646
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1647
1648
1649
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1650
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1651
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1652

Lintang Sutawika's avatar
Lintang Sutawika committed
1653
1654
1655
1656
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1657
            result_dict = {
1658
                **({"acc": acc} if "acc" in use_metric else {}),
1659
1660
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1661
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1662
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1663
1664
1665
1666
1667
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1668
1669
            }

1670
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1671
1672
1673
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1674
1675
1676
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1677
        elif self.OUTPUT_TYPE == "generate_until":
1678
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1679
            result = results[0]
1680
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1681
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1682
                # it assumes that doc_to_target returns a number.
1683
1684
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1685
1686
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1687
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1688
1689
1690
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1691
            ):
Chris's avatar
Chris committed
1692
1693
                # cast gold to the same type as result
                gold = type(result)(gold)
1694

lintangsutawika's avatar
lintangsutawika committed
1695
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1696
1697
1698
1699
1700
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1701
1702
1703
1704
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1705
1706
1707
1708
1709
1710
1711
1712
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1713
                    else:
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1735
                else:
1736
                    try:
1737
                        result_score = self._metric_fn_list[metric](
1738
1739
                            references=[gold],
                            predictions=[result],
1740
                            **self._metric_fn_kwargs[metric],
1741
                        )
1742
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1743
                        result_score = self._metric_fn_list[metric]([gold, result])
1744
1745
1746
1747
1748
1749
1750
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1751
        else:
lintangsutawika's avatar
lintangsutawika committed
1752
1753
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1754
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1755
            )
1756
1757
1758

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1759
    def aggregation(self) -> dict:
1760
1761
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1762
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1763
        return self._higher_is_better
1764

Baber Abbasi's avatar
Baber Abbasi committed
1765
1766
1767
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1768
1769
1770
1771
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1772
1773
1774
1775
1776
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1777
            f"num_samples={len(self.eval_docs)})"
1778
1779
        )

1780
    def calculate_metrics(
Baber's avatar
TODO!  
Baber committed
1781
        self,
Baber's avatar
Baber committed
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
        requests: list[Instance] = None,
        filter_keys: list[str] = None,
        indices: list[int] = None,
        rank: int = 1,
        limit: int = None,
        world_size: int = 1,
        log_samples: bool = False,
    ) -> tuple[
        Optional[dict[tuple[str, str], list[list[float]]]], Optional[list[dict]]
    ]:
1792
1793
1794
1795
1796
        """Calculate metrics for all datapoints in the task.

        Args:
            instances_by_doc_id (dict): Dictionary mapping doc_ids to lists of instances.
            filter_key (str): The filter key to use for filtered responses.
Baber's avatar
Baber committed
1797
            indices (dict, optional): Dictionary of sample indices to evaluate.
1798
1799
1800
1801
1802
1803
1804
            rank (int): The process rank.
            limit (int, optional): Limit on number of examples to evaluate.
            world_size (int): Total number of processes.

        Returns:
            list: A list of metrics calculated for each document.
        """
Baber's avatar
Baber committed
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
        if not requests and not self.instances:
            return None, None

        ### Collect values of metrics on all datapoints ###
        # Pre-process task.instances to group by doc_id
        instances_by_doc_id = defaultdict(list)
        for instance in self.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
        _all_metrics = defaultdict(list)
        _samples = [] if log_samples else None
1818

Baber's avatar
TODO!  
Baber committed
1819
        if filter_keys is None:
1820
1821
1822
1823
1824
            filter_keys = (
                [x.name for x in self._filters]
                if hasattr(self, "_filters")
                else ["none"]
            )
Baber's avatar
TODO!  
Baber committed
1825
1826
1827
1828
1829
1830
1831
        if isinstance(filter_keys, str):
            filter_keys = [filter_keys]
        for filter_key in filter_keys:
            doc_iterator = self.doc_iterator(
                rank=rank,
                limit=limit,
                world_size=world_size,
Baber's avatar
Baber committed
1832
                samples=indices,
Baber's avatar
TODO!  
Baber committed
1833
            )
1834

Baber's avatar
TODO!  
Baber committed
1835
            for doc_id, doc in doc_iterator:
Baber's avatar
Baber committed
1836
                _sample_metric = defaultdict(list)
Baber's avatar
nit  
Baber committed
1837
                _doc_id_true = indices[doc_id] if indices else doc_id
Baber's avatar
Baber committed
1838
                requests = instances_by_doc_id[_doc_id_true]
Baber's avatar
nit  
Baber committed
1839
                if self.OUTPUT_TYPE != "generate_until":
Baber's avatar
Baber committed
1840
1841
1842
                    # if one doc has multiple instances then calculate metric together
                    metrics = self.process_results(
                        doc, [req.filtered_resps[filter_key] for req in requests]
Baber's avatar
TODO!  
Baber committed
1843
                    )
Baber's avatar
Baber committed
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
                else:
                    metrics = [
                        self.process_results(doc, response)
                        for req in requests
                        for response in (
                            req.filtered_resps[filter_key]
                            if isinstance(req.filtered_resps[filter_key], list)
                            else [req.filtered_resps[filter_key]]
                        )
                    ]
Baber's avatar
Baber committed
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
                for metric in metrics:
                    for k, v in metric.items():
                        _sample_metric[k].append(v)
                if log_samples:
                    _samples.append(
                        create_sample_log(
                            doc=doc,
                            doc_id=_doc_id_true,
                            target=self.doc_to_target(doc),
                            requests=requests,
                            metric_names=metrics,
                            filter_key=filter_key,
                        )
                    )
                for metric_name, _score in _sample_metric.items():
                    _all_metrics[(metric_name, filter_key)].append(_score)
Baber's avatar
Baber committed
1870
        self.metric_results = _all_metrics
Baber's avatar
Baber committed
1871
        return _all_metrics, _samples
Baber's avatar
test  
Baber committed
1872

Baber's avatar
Baber committed
1873
1874
    def compute_agg_metrics(
        self,
Baber's avatar
Baber committed
1875
        metric_results: dict[tuple[str, str], list[list[float]]] = None,
Baber's avatar
Baber committed
1876
1877
        bootstrap_iters: int = 1000,
    ):
Baber's avatar
Baber committed
1878
        metric_results = metric_results if metric_results else self.metric_results
Baber's avatar
Baber committed
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
        agg_metrics = defaultdict(list)
        for (metric_name, filter_key), scores in metric_results.items():
            agg_fn = self.aggregation()[metric_name]
            metric_key = f"{metric_name},{filter_key}"
            self.repeat_metric = pass_at_k
            repeats = [
                self.repeat_metric(len(x), x.count(1), k=x.count(1) - 1) for x in scores
            ]
            repeat_agg = np.mean(repeats)
            agg_metrics[metric_key] = [agg_fn(items) for items in zip(*scores)]
            if isinstance(bootstrap_iters, int):
                stderr_fn = stderr_for_metric(
                    metric=agg_fn,
                    bootstrap_iters=min(bootstrap_iters, 100)
                    if metric_name in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
                agg_metrics[f"{metric_name}_stderr,{filter_key}"] = [
                    (stderr_fn(item) if (stderr_fn and len(item) > 1) else "N/A")
                    for item in zip(*scores)
                ][0]
            agg_metrics[f"{metric_key}_repeat"] = [repeat_agg]
Baber's avatar
test  
Baber committed
1901

Baber's avatar
Baber committed
1902
        return agg_metrics
Baber's avatar
test  
Baber committed
1903

1904
1905

class MultipleChoiceTask(Task):
1906
    OUTPUT_TYPE = "loglikelihood"
1907

baberabb's avatar
baberabb committed
1908
    def doc_to_target(self, doc: dict) -> str:
1909
1910
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1911
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1912
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1913
1914
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1915
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1916
                doc=doc,
1917
                arguments=(ctx, " {}".format(choice)),
1918
                idx=i,
1919
1920
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1921
1922
            for i, choice in enumerate(doc["choices"])
        ]
1923

1924
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1925
1926
1927
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1939
    def higher_is_better(self) -> dict:
1940
1941
1942
1943
1944
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1945
    def aggregation(self) -> dict:
1946
1947
1948
1949
1950
1951
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1952
class PerplexityTask(Task):
Baber's avatar
Baber committed
1953
    OUTPUT_TYPE: OutputType = "loglikelihood_rolling"
1954

baberabb's avatar
baberabb committed
1955
    def has_training_docs(self) -> bool:
1956
1957
        return False

baberabb's avatar
baberabb committed
1958
    def fewshot_examples(self, k: int, rnd) -> List:
1959
1960
1961
1962
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1963
1964
        return []

baberabb's avatar
baberabb committed
1965
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1966
1967
1968
1969
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1970
1971
1972

        return ""

baberabb's avatar
baberabb committed
1973
    def higher_is_better(self) -> dict:
1974
1975
1976
1977
1978
1979
1980
1981
1982
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1983
    def doc_to_text(self, doc) -> str:
1984
1985
1986
1987
1988
        return ""

    def doc_to_target(self, doc):
        return doc

1989
1990
1991
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1992

lintangsutawika's avatar
lintangsutawika committed
1993
1994
1995
1996
1997
1998
1999
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
2000

2001
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
2002
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
2003
2004
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
2005
2006
2007
2008
2009
2010
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
2011
    def aggregation(self) -> dict:
2012
2013
2014
2015
2016
2017
2018
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
2019
    def count_bytes(cls, doc) -> int:
2020
2021
2022
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
2023
    def count_words(cls, doc) -> int:
2024
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
2025
        return len(re.split(r"\s+", doc))