task.py 78 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
import re
Baber's avatar
test  
Baber committed
6
from collections import defaultdict
7
from collections.abc import Callable
8
from copy import deepcopy
9
from dataclasses import asdict, dataclass
10
from inspect import getsource
11
12
13
14
15
16
17
18
19
20
21
22
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
23
24
25

import datasets
import numpy as np
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
from lm_eval.api.instance import Instance, OutputType
Baber's avatar
Baber committed
31
32
33
34
35
36
from lm_eval.api.metrics import (
    bits_per_byte,
    mean,
    stderr_for_metric,
    weighted_perplexity,
)
lintangsutawika's avatar
lintangsutawika committed
37
from lm_eval.api.registry import (
38
39
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
40
    get_aggregation,
41
    get_metric,
42
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
43
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
44
)
45
from lm_eval.caching.cache import load_from_cache, save_to_cache
46
47
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt
Baber's avatar
Baber committed
48
from lm_eval.utils import create_sample_log, pass_at_k
49

50

51
52
53
54
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
55
    "generate_until",
56
57
]

Lintang Sutawika's avatar
Lintang Sutawika committed
58
eval_logger = logging.getLogger(__name__)
59

lintangsutawika's avatar
lintangsutawika committed
60

61
62
@dataclass
class TaskConfig(dict):
63
    # task naming/registry
64
65
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
66
    tag: Optional[Union[str, list]] = None
67
68
69
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
70
    custom_dataset: Optional[Callable] = None
71
72
73
74
75
76
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
77
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
78
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
79
    )
80
81
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
82
83
84
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
85
    doc_to_image: Union[Callable, str] = None
86
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
87
    unsafe_code: bool = False
88
89
90
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
91
    description: str = ""
92
93
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
94
    fewshot_config: Optional[dict] = None
95
    # runtime configuration options
96
    num_fewshot: Optional[int] = None
97
    # scoring options
98
99
100
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
101
    repeats: int = 1
102
    filter_list: Optional[Union[str, list]] = None
103
    should_decontaminate: bool = False
104
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
105
    gen_prefix: Optional[str] = None
106
    repeat_agg: Optional[str] = None
107
108
109
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
110

Ethan Smith's avatar
Ethan Smith committed
111
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
112
        if self.generation_kwargs is not None:
113
            if self.output_type != "generate_until":
114
                eval_logger.warning(
115
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
120
121
122
123
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
124
125
126
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
127
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
128
        else:
129
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
130
131
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
132
133
134
135
136
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
137
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
138
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
139
                }
Baber Abbasi's avatar
Baber Abbasi committed
140
141
142
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
143

144
145
146
    def __getitem__(self, item):
        return getattr(self, item)

147
148
149
    def __setitem__(self, item, value):
        return setattr(self, item, value)

150
    def to_dict(self, keep_callable: bool = False) -> dict:
151
152
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
153
        Used for dumping results alongside full task configuration
154

haileyschoelkopf's avatar
haileyschoelkopf committed
155
156
157
158
159
160
161
162
163
164
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
165
166
167
168
169
170
171
172
173
174
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
175
        return cfg_dict
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

193
194
195
196
197
198
199
200
201
202
203

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

204
    VERSION: Optional[Union[int, str]] = None
205

206
207
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
208
    DATASET_PATH: Optional[str] = None
209
210

    # The name of a subset within `DATASET_PATH`.
211
    DATASET_NAME: Optional[str] = None
212

213
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
214

215
216
    def __init__(
        self,
217
218
219
220
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
221
    ) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
244
245
246
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
247

248
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
249

lintangsutawika's avatar
lintangsutawika committed
250
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
251
252
253
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
254

255
256
257
258
259
260
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
285
286
287
288
289
290
291
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
292

293
    @property
294
    def config(self) -> TaskConfig:
295
296
297
        """Returns the TaskConfig associated with this class."""
        return self._config

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

313
    def training_docs(self) -> Iterable:
314
315
316
317
318
319
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

320
    def validation_docs(self) -> Iterable:
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

327
    def test_docs(self) -> Iterable:
328
329
330
331
332
333
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

334
    def fewshot_docs(self) -> Iterable:
335
336
337
338
339
340
341
342
343
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
344
345
346
347
348
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
349
350
            return self.test_docs()

351
    def _process_doc(self, doc: dict) -> dict:
352
353
354
355
356
357
358
359
360
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
361

362
    @property
363
    def instances(self) -> List[Instance]:
364
365
366
367
368
369
370
371
372
373
374
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

375
376
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
377
378
379
380
381
382
383
384
385
386
387
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

388
389
390
391
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

392
393
394
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
395
396
397
    def doc_to_prefix(self, doc):
        return ""

398
399
    def build_all_requests(
        self,
400
        *,
401
        limit: Union[int, None] = None,
402
        samples: Optional[List[int]] = None,
403
404
405
406
407
408
409
410
411
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
412
    ) -> None:
413
        """Build a set of Instances for a task, and store them in task.instances"""
414
415
416
417

        # used with caching
        og_limit = limit

418
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
419
420
421
422
423
424
425
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
426
        cache_key += f"-tokenizer{tokenizer_name}"
427

Baber Abbasi's avatar
Baber Abbasi committed
428
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
429
430
431
432
433
434
435
436
437
438
439
440
441

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
442
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
443

444
        instances = []
445
446
447
448
449
450
451
452
453
454

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
455
456
457
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
458
459
460
461
462
463
464
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
465
        ):
466
            # sample fewshot context #TODO: need to offset doc_id by rank now!
467
            fewshot_ctx = self.fewshot_context(
468
                doc,
469
470
471
472
473
474
475
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
476
                gen_prefix=self.doc_to_prefix(doc),
477
            )
478

479
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
480
481
482
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
483
                metadata=(self.config["task"], doc_id, self.config.repeats),
484
                apply_chat_template=apply_chat_template,
485
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
486
            )
487
488
489
490

            if not isinstance(inst, list):
                inst = [inst]

491
492
493
494
495
496
497
498
499
500
501
502
503
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
504

505
506
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
507

508
509
510
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
527
            The number of times each instance in a dataset is inferred on. Defaults to 1,
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

563
564
565
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
566
567
568
569
570
571
572
573
574
575
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

576
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
577
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
578
579
580
581
582
583
584
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
585
586
587
588
589
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
590
591
592
        :returns: str
            The fewshot context.
        """
593
        if rnd is None:
594
595
596
597
598
599
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
600

601
        description = description if description else ""
602
603

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
604
            labeled_examples = ""
605
        else:
lintangsutawika's avatar
lintangsutawika committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
630
            )
631
632

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
633
        return description + labeled_examples + example
634

635
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
636
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
637
638
        if hasattr(self, "_filters"):
            for f in self._filters:
639
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
640
641
642
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
643

baberabb's avatar
baberabb committed
644
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
645
        """Returns the config as a dictionary."""
646
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
647
        # (num_fewshot)
648
        return self.config.to_dict()
649

Baber Abbasi's avatar
Baber Abbasi committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

690
691
692
693
694
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

695
696
697
698
699
700
701
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
702
703
704
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
705
706

    def doc_iterator(
707
708
709
710
711
712
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
713
    ) -> Iterator[Tuple[int, Any]]:
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
736
737
        return doc_iterator

738
739

class ConfigurableTask(Task):
740
    VERSION = "Yaml"
741
    OUTPUT_TYPE = None
742
    CONFIG = None
743
744

    def __init__(
745
746
747
748
749
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
750
    ) -> None:  # TODO no super() call here
751
        # Get pre-configured attributes
752
        self._config = self.CONFIG
753

754
        # Use new configurations if there was no preconfiguration
755
        if self.config is None:
756
            self._config = TaskConfig(**config)
757
758
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
759
            if config is not None:
760
                self._config.__dict__.update(config)
761

762
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
763
764
765
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
766

767
768
769
770
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

771
        if self.config.output_type is not None:
772
773
774
775
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
776
            self.OUTPUT_TYPE = self.config.output_type
777

778
779
780
781
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

782
783
784
785
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
786
787
788
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

789
790
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
791

792
793
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
794

795
796
797
798
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
799

800
        if self.config.metric_list is None:
801
            # TODO: handle this in TaskConfig.__post_init__ ?
802
803
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

804
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
805
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
806
                self._metric_fn_kwargs[metric_name] = {}
807
808
809
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
810
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
811
        else:
812
            for metric_config in self.config.metric_list:
813
814
815
816
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
817
818
819
820
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
821
822
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
823
                }
Chris's avatar
Chris committed
824
825
826
827
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
828

829
                if self.config.process_results is not None:
830
831
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
832
833
834
835
836
837
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
838
839
840
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
841
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
842

843
                if "aggregation" in metric_config:
844
                    agg_name = metric_config["aggregation"]
845
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
846
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
847
                    elif callable(agg_name):  # noqa: E721
848
849
850
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
851
                else:
852
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
853
                    metric_agg = get_metric_aggregation(metric_name)
854
                    eval_logger.warning(
855
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
856
857
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
858
                    )
859
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
860

861
862
863
864
865
866
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
867
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
868
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
869
                        f"higher_is_better={is_higher_better(metric_name)}"
870
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
871
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
872

873
        self.download(self.config.dataset_kwargs)
874
875
876
        self._training_docs = None
        self._fewshot_docs = None

877
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
878
            self._filters = []
879
            for filter_config in self.config.filter_list:
880
881
882
883
884
885
886
887
888
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
889
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
890
        else:
Baber Abbasi's avatar
Baber Abbasi committed
891
892
893
894
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
895
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
896

897
898
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
899
            self.prompt = get_prompt(
900
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
901
            )
902
903
904
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
905
        if self.fewshot_docs() is not None:
906
907
908
909
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
910
911
912
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
929

930
        self.task_docs = self.eval_docs
931

932
        # Test One Doc
933
        self.features = list(self.task_docs.features.keys())
934
935
        self.multiple_input = 0
        self.multiple_target = 0
936
        test_doc = self.task_docs[0]
937
        test_text = self.doc_to_text(test_doc)
938
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
939

940
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
941
            test_choice = self.doc_to_choice(test_doc)
942
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
943
                eval_logger.error("doc_to_choice must return list")
944
945
            else:
                num_choice = len(test_choice)
946

947
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
948
949
950
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
951
                self.multiple_input = num_choice
952
953
        else:
            test_choice = None
954

955
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
956
957
958
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
959
            self.multiple_target = len(test_target)
960
        else:
961
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
962
                test_target = test_choice[test_target]
963
            else:
lintangsutawika's avatar
lintangsutawika committed
964
                test_target = str(test_target)
965

966
967
968
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
969
            check_choices = [test_target]
970
971
972
973
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
974
975
                    True
                    if self.config.target_delimiter.rstrip()
976
                    != self.config.target_delimiter
977
                    else False
978
                )
979

980
                if delimiter_has_whitespace and choice_has_whitespace:
981
982
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
983
984
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
985
                    eval_logger.debug(
986
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
987
988
                    )

Baber Abbasi's avatar
Baber Abbasi committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1006

baberabb's avatar
baberabb committed
1007
    def has_training_docs(self) -> bool:
1008
        if self.config.training_split is not None:
1009
1010
1011
1012
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1013
    def has_validation_docs(self) -> bool:
1014
        if self.config.validation_split is not None:
1015
1016
1017
1018
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1019
    def has_test_docs(self) -> bool:
1020
        if self.config.test_split is not None:
1021
1022
1023
1024
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1025
    def training_docs(self) -> datasets.Dataset:
1026
        if self.has_training_docs():
1027
1028
1029
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1030
                )
1031
            return self.dataset[self.config.training_split]
1032

baberabb's avatar
baberabb committed
1033
    def validation_docs(self) -> datasets.Dataset:
1034
        if self.has_validation_docs():
1035
1036
1037
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1038
                )
1039
            return self.dataset[self.config.validation_split]
1040

baberabb's avatar
baberabb committed
1041
    def test_docs(self) -> datasets.Dataset:
1042
        if self.has_test_docs():
1043
1044
1045
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1046

1047
    def fewshot_docs(self):
1048
        if self.config.fewshot_split is not None:
1049
1050
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1051
            return self.dataset[self.config.fewshot_split]
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1064
        else:
1065
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1066
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1067
                    f"[Task: {self.config.task}] "
1068
1069
1070
1071
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1072

KonradSzafer's avatar
KonradSzafer committed
1073
1074
1075
1076
1077
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1078
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1079
1080
1081
1082
1083
1084
1085
1086
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1087
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1088
1089
            # if last message is user, append to it to avoid two user messages in a row
            else:
1090
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1091
1092
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1093
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1094
1095
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1096

lintangsutawika's avatar
lintangsutawika committed
1097
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1098
1099
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1100
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1101
1102
1103
1104
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1105
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1106
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1107
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1108
1109
1110
1111
1112
1113
1114
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1115
1116
1117
1118
1119
1120
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1121
1122
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1123
1124
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1125
1126
1127
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1128
1129
1130
1131
1132
1133
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1134
1135
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1136

KonradSzafer's avatar
KonradSzafer committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1146
        else:
KonradSzafer's avatar
KonradSzafer committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1160
1161
1162
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1163
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1164
1165
1166
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1167
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1168
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1169
                )
lintangsutawika's avatar
lintangsutawika committed
1170
1171

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1172
1173
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1174
                # TODO: append prefill?
1175
1176
                if not labeled_examples:
                    return ""
1177
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1178
1179
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1180
1181
1182
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1183
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1184
1185
1186
1187
1188
1189
1190
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1191
1192
1193
1194
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1195
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1196
1197
1198
1199
1200
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1201
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1202
1203
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1204
1205
1206
1207
1208
1209
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1210
1211
1212
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1213
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1214
1215
1216
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1217
1218
1219
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1220
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1221
1222
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1223
1224
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1225
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1226
            )
1227
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1228
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1229
1230
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1231
1232
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1233
1234
            if self.multiple_input:
                return labeled_examples
1235
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1236
                return labeled_examples + example + prefix
1237
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1238
                return [labeled_examples + ex + prefix for ex in example]
1239
1240
1241
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1242
                    return labeled_examples + choices[example] + prefix
1243
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1244
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1245

Baber Abbasi's avatar
Baber Abbasi committed
1246
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1247
        """Iterates over FilterEnsembles and applies them to instances"""
1248
1249
        if hasattr(self, "_filters"):
            for f in self._filters:
1250
                f.apply(self._instances)
1251
1252
1253
1254
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1255
    def should_decontaminate(self):
1256
        return self.config.should_decontaminate
1257

Baber Abbasi's avatar
Baber Abbasi committed
1258
    def doc_to_decontamination_query(self, doc: dict):
1259
        if self.config.should_decontaminate:
1260
1261
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1262
            else:
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1274

1275
    def _process_doc(self, doc: dict) -> dict:
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1286
    def doc_to_text(self, doc, doc_to_text=None):
1287
1288
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1289
1290
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1291
        else:
1292
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1293

1294
        if isinstance(doc_to_text, int):
1295
            return doc_to_text
1296
        elif isinstance(doc_to_text, str):
1297
            if doc_to_text in self.features:
1298
                # if self.config.doc_to_choice is not None:
1299
1300
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1301
1302
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1303
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1304
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1305
1306
1307
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1308
        elif callable(doc_to_text):
1309
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1310
        # Used when applying a Promptsource template
1311
        elif hasattr(doc_to_text, "apply"):
1312
1313
1314
1315
1316
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1317
                return self.config.fewshot_delimiter
1318
        else:
1319
            print(type(doc_to_text))
1320
            raise TypeError
1321

Yu Shi Jie's avatar
Yu Shi Jie committed
1322
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1323
1324
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1325
1326
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1327
        else:
1328
            doc_to_target = self.config.doc_to_target
1329

1330
        if isinstance(doc_to_target, int):
1331
            return doc_to_target
1332
        elif isinstance(doc_to_target, str):
1333
            if doc_to_target in self.features:
1334
                # if self.config.doc_to_choice is not None:
1335
1336
1337
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1338
            else:
lintangsutawika's avatar
lintangsutawika committed
1339
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1340
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1341
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1342
1343
1344
1345
1346
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1347
1348
1349
1350
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1351
1352
                else:
                    return target_string
1353
        elif isinstance(doc_to_target, list):
1354
            return doc_to_target
1355
        elif callable(doc_to_target):
1356
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1357
        # Used when applying a Promptsource template
1358
        elif hasattr(doc_to_target, "apply"):
1359
            applied_prompt = doc_to_target.apply(doc)
1360
1361
1362
1363
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1364
                return self.config.fewshot_delimiter
1365
1366
        else:
            raise TypeError
1367

Yu Shi Jie's avatar
Yu Shi Jie committed
1368
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1369
1370
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1371
1372
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1373
        elif self.config.doc_to_choice is None:
1374
1375
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1376
            doc_to_choice = self.config.doc_to_choice
1377

1378
        if isinstance(doc_to_choice, str):
1379
1380
1381
1382
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1383
        elif isinstance(doc_to_choice, list):
1384
            return doc_to_choice
1385
        elif isinstance(doc_to_choice, dict):
1386
1387
1388
1389
1390
1391
1392
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1393

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1440
1441
1442
1443
1444
1445
1446
1447
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1448
1449
1450
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1451
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1452
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1453

1454
1455
        aux_arguments = None

1456
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1457
            arguments = (ctx, self.doc_to_target(doc))
1458
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1459
            arguments = (self.doc_to_target(doc),)
1460
        elif self.OUTPUT_TYPE == "multiple_choice":
1461
            choices = self.doc_to_choice(doc)
1462
            target_delimiter = self.config.target_delimiter
1463
1464
            if apply_chat_template:
                target_delimiter = ""
1465
1466
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1467
                # apply chat_template to choices if apply_chat_template
1468
                cont = self.doc_to_target(doc)
1469

1470
                arguments = [
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1481
                ]
1482
            else:
1483
                # Otherwise they are placed in the continuation
1484
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1485

1486
1487
1488
1489
1490
1491
1492
1493
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1494
1495
1496
1497
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1498
1499
1500
1501
1502
1503

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

Baber's avatar
Baber committed
1504
1505
1506
1507
1508
1509
1510
        else:
            raise ValueError(
                f"Unsupported OUTPUT_TYPE: '{self.OUTPUT_TYPE}'. "
                f"Expected one of: 'loglikelihood', 'loglikelihood_rolling', "
                f"'multiple_choice', 'generate_until'"
            )

1511
1512
1513
1514
1515
1516
1517
1518
1519
        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1520
1521
1522
1523
1524
1525
1526
1527
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1528
1529
1530
1531
1532
1533
1534
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1535
            request_list = [
1536
1537
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1538
                    doc=doc,
Baber's avatar
Baber committed
1539
1540
                    arguments=arg,
                    # arguments=LoglikelihoodInput(context=arg[0], continuation=arg[1]),
1541
                    idx=i,
1542
1543
                    **kwargs,
                )
1544
                for i, arg in enumerate(arguments)
1545
            ]
1546
1547

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1548

lintangsutawika's avatar
lintangsutawika committed
1549
        return Instance(
1550
1551
            request_type=self.OUTPUT_TYPE,
            doc=doc,
Baber's avatar
Baber committed
1552
1553
1554
            arguments=arguments,
            # if self.OUTPUT_TYPE in ["loglikelihood", "loglikelihood_rolling"]
            # else GenerateInput(*arguments),
1555
1556
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1557
        )
1558
1559

    def process_results(self, doc, results):
1560
1561
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1562

1563
        result_dict = {}
1564
        use_metric = list(self._metric_fn_list.keys())
1565
1566
1567
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1568
1569
1570
1571
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1572
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1573
            (loglikelihood,) = results
1574
1575
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1576
            return {
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1592
            }
1593
        elif self.OUTPUT_TYPE == "multiple_choice":
1594
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1595

1596
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1597
            choices = self.doc_to_choice(doc)
1598
1599
            completion_len = np.array([float(len(i)) for i in choices])

1600
1601
            if (
                2 * len(choices) == len(lls)
1602
                and "acc_mutual_info" in self._metric_fn_list.keys()
1603
1604
1605
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1606
1607
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1608
1609
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1610
                # and this stores our "regular" conditional loglikelihoods
1611
                lls = lls[: len(choices)]
1612

1613
1614
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1615

1616
1617
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1618
            else:
1619
                gold = self.doc_to_target(doc)
1620
1621

            gold_index_error = False
1622
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1623
1624
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1625
1626
                    gold_index_error = True
            else:
1627
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1628
                    gold = gold if gold < len(choices) else -100
1629
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1630
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1631

Lintang Sutawika's avatar
Lintang Sutawika committed
1632
                if gold == -100:
1633
1634
1635
1636
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1637
                    f"Label index was not in within range of available choices,"
1638
1639
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1640

1641
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1642
1643
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1644
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1645
1646
1647
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1648
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1649
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1650

Lintang Sutawika's avatar
Lintang Sutawika committed
1651
1652
1653
1654
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1655
            result_dict = {
1656
                **({"acc": acc} if "acc" in use_metric else {}),
1657
1658
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1659
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1660
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1661
1662
1663
1664
1665
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1666
1667
            }

1668
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1669
1670
1671
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1672
1673
1674
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1675
        elif self.OUTPUT_TYPE == "generate_until":
1676
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1677
            result = results[0]
1678
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1679
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1680
                # it assumes that doc_to_target returns a number.
1681
1682
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1683
1684
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1685
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1686
1687
1688
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1689
            ):
Chris's avatar
Chris committed
1690
1691
                # cast gold to the same type as result
                gold = type(result)(gold)
1692

lintangsutawika's avatar
lintangsutawika committed
1693
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1694
1695
1696
1697
1698
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1699
1700
1701
1702
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1703
1704
1705
1706
1707
1708
1709
1710
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1711
                    else:
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1733
                else:
1734
                    try:
1735
                        result_score = self._metric_fn_list[metric](
1736
1737
                            references=[gold],
                            predictions=[result],
1738
                            **self._metric_fn_kwargs[metric],
1739
                        )
1740
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1741
                        result_score = self._metric_fn_list[metric]([gold, result])
1742
1743
1744
1745
1746
1747
1748
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1749
        else:
lintangsutawika's avatar
lintangsutawika committed
1750
1751
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1752
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1753
            )
1754
1755
1756

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1757
    def aggregation(self) -> dict:
1758
1759
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1760
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1761
        return self._higher_is_better
1762

Baber Abbasi's avatar
Baber Abbasi committed
1763
1764
1765
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1766
1767
1768
1769
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1770
1771
1772
1773
1774
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1775
            f"num_samples={len(self.eval_docs)})"
1776
1777
        )

1778
    def calculate_metrics(
Baber's avatar
TODO!  
Baber committed
1779
        self,
Baber's avatar
Baber committed
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
        requests: list[Instance] = None,
        filter_keys: list[str] = None,
        indices: list[int] = None,
        rank: int = 1,
        limit: int = None,
        world_size: int = 1,
        log_samples: bool = False,
    ) -> tuple[
        Optional[dict[tuple[str, str], list[list[float]]]], Optional[list[dict]]
    ]:
1790
1791
1792
1793
1794
        """Calculate metrics for all datapoints in the task.

        Args:
            instances_by_doc_id (dict): Dictionary mapping doc_ids to lists of instances.
            filter_key (str): The filter key to use for filtered responses.
Baber's avatar
Baber committed
1795
            indices (dict, optional): Dictionary of sample indices to evaluate.
1796
1797
1798
1799
1800
1801
1802
            rank (int): The process rank.
            limit (int, optional): Limit on number of examples to evaluate.
            world_size (int): Total number of processes.

        Returns:
            list: A list of metrics calculated for each document.
        """
Baber's avatar
Baber committed
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
        if not requests and not self.instances:
            return None, None

        ### Collect values of metrics on all datapoints ###
        # Pre-process task.instances to group by doc_id
        instances_by_doc_id = defaultdict(list)
        for instance in self.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
        _all_metrics = defaultdict(list)
        _samples = [] if log_samples else None
1816

Baber's avatar
TODO!  
Baber committed
1817
        if filter_keys is None:
1818
1819
1820
1821
1822
            filter_keys = (
                [x.name for x in self._filters]
                if hasattr(self, "_filters")
                else ["none"]
            )
Baber's avatar
TODO!  
Baber committed
1823
1824
1825
1826
1827
1828
1829
        if isinstance(filter_keys, str):
            filter_keys = [filter_keys]
        for filter_key in filter_keys:
            doc_iterator = self.doc_iterator(
                rank=rank,
                limit=limit,
                world_size=world_size,
Baber's avatar
Baber committed
1830
                samples=indices,
Baber's avatar
TODO!  
Baber committed
1831
            )
1832

Baber's avatar
TODO!  
Baber committed
1833
            for doc_id, doc in doc_iterator:
Baber's avatar
Baber committed
1834
                _sample_metric = defaultdict(list)
Baber's avatar
nit  
Baber committed
1835
                _doc_id_true = indices[doc_id] if indices else doc_id
Baber's avatar
Baber committed
1836
                requests = instances_by_doc_id[_doc_id_true]
Baber's avatar
nit  
Baber committed
1837
                if self.OUTPUT_TYPE != "generate_until":
Baber's avatar
Baber committed
1838
1839
1840
                    # if one doc has multiple instances then calculate metric together
                    metrics = self.process_results(
                        doc, [req.filtered_resps[filter_key] for req in requests]
Baber's avatar
TODO!  
Baber committed
1841
                    )
Baber's avatar
Baber committed
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
                else:
                    metrics = [
                        self.process_results(doc, response)
                        for req in requests
                        for response in (
                            req.filtered_resps[filter_key]
                            if isinstance(req.filtered_resps[filter_key], list)
                            else [req.filtered_resps[filter_key]]
                        )
                    ]
Baber's avatar
Baber committed
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
                for metric in metrics:
                    for k, v in metric.items():
                        _sample_metric[k].append(v)
                if log_samples:
                    _samples.append(
                        create_sample_log(
                            doc=doc,
                            doc_id=_doc_id_true,
                            target=self.doc_to_target(doc),
                            requests=requests,
                            metric_names=metrics,
                            filter_key=filter_key,
                        )
                    )
                for metric_name, _score in _sample_metric.items():
                    _all_metrics[(metric_name, filter_key)].append(_score)
1868

Baber's avatar
Baber committed
1869
        return _all_metrics, _samples
Baber's avatar
test  
Baber committed
1870

Baber's avatar
Baber committed
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
    def compute_agg_metrics(
        self,
        metric_results: dict[tuple[str, str], list[list[float]]],
        bootstrap_iters: int = 1000,
    ):
        agg_metrics = defaultdict(list)
        for (metric_name, filter_key), scores in metric_results.items():
            agg_fn = self.aggregation()[metric_name]
            metric_key = f"{metric_name},{filter_key}"
            self.repeat_metric = pass_at_k
            repeats = [
                self.repeat_metric(len(x), x.count(1), k=x.count(1) - 1) for x in scores
            ]
            repeat_agg = np.mean(repeats)
            agg_metrics[metric_key] = [agg_fn(items) for items in zip(*scores)]
            if isinstance(bootstrap_iters, int):
                stderr_fn = stderr_for_metric(
                    metric=agg_fn,
                    bootstrap_iters=min(bootstrap_iters, 100)
                    if metric_name in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
                agg_metrics[f"{metric_name}_stderr,{filter_key}"] = [
                    (stderr_fn(item) if (stderr_fn and len(item) > 1) else "N/A")
                    for item in zip(*scores)
                ][0]
            agg_metrics[f"{metric_key}_repeat"] = [repeat_agg]
Baber's avatar
test  
Baber committed
1898

Baber's avatar
Baber committed
1899
        return agg_metrics
Baber's avatar
test  
Baber committed
1900

1901
1902

class MultipleChoiceTask(Task):
1903
    OUTPUT_TYPE = "loglikelihood"
1904

baberabb's avatar
baberabb committed
1905
    def doc_to_target(self, doc: dict) -> str:
1906
1907
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1908
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1909
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1910
1911
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1912
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1913
                doc=doc,
1914
                arguments=(ctx, " {}".format(choice)),
1915
                idx=i,
1916
1917
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1918
1919
            for i, choice in enumerate(doc["choices"])
        ]
1920

1921
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1922
1923
1924
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1936
    def higher_is_better(self) -> dict:
1937
1938
1939
1940
1941
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1942
    def aggregation(self) -> dict:
1943
1944
1945
1946
1947
1948
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1949
class PerplexityTask(Task):
Baber's avatar
Baber committed
1950
    OUTPUT_TYPE: OutputType = "loglikelihood_rolling"
1951

baberabb's avatar
baberabb committed
1952
    def has_training_docs(self) -> bool:
1953
1954
        return False

baberabb's avatar
baberabb committed
1955
    def fewshot_examples(self, k: int, rnd) -> List:
1956
1957
1958
1959
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1960
1961
        return []

baberabb's avatar
baberabb committed
1962
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1963
1964
1965
1966
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1967
1968
1969

        return ""

baberabb's avatar
baberabb committed
1970
    def higher_is_better(self) -> dict:
1971
1972
1973
1974
1975
1976
1977
1978
1979
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1980
    def doc_to_text(self, doc) -> str:
1981
1982
1983
1984
1985
        return ""

    def doc_to_target(self, doc):
        return doc

1986
1987
1988
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1989

lintangsutawika's avatar
lintangsutawika committed
1990
1991
1992
1993
1994
1995
1996
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1997

1998
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1999
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
2000
2001
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
2002
2003
2004
2005
2006
2007
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
2008
    def aggregation(self) -> dict:
2009
2010
2011
2012
2013
2014
2015
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
2016
    def count_bytes(cls, doc) -> int:
2017
2018
2019
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
2020
    def count_words(cls, doc) -> int:
2021
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
2022
        return len(re.split(r"\s+", doc))