task.py 70.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

Lintang Sutawika's avatar
Lintang Sutawika committed
51
eval_logger = logging.getLogger(__name__)
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
63
    custom_dataset: Optional[Callable] = None
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
71
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
72
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
79
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
80
    unsafe_code: bool = False
81
82
83
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
84
    description: str = ""
85
86
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
87
    fewshot_config: Optional[dict] = None
88
    # runtime configuration options
89
    num_fewshot: Optional[int] = None
90
    # scoring options
91
92
93
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
94
    repeats: int = 1
95
    filter_list: Optional[Union[str, list]] = None
96
    should_decontaminate: bool = False
97
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
98
    gen_prefix: Optional[str] = None
99
100
101
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
102

Ethan Smith's avatar
Ethan Smith committed
103
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
104
        if self.generation_kwargs is not None:
105
            if self.output_type != "generate_until":
106
                eval_logger.warning(
107
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
108
109
110
111
112
113
114
115
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
116
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
117
        else:
118
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
121
122
123
124
125
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
126
127
                    "do_sample": False,
                }
128

129
130
131
    def __getitem__(self, item):
        return getattr(self, item)

132
133
134
    def __setitem__(self, item, value):
        return setattr(self, item, value)

135
    def to_dict(self, keep_callable: bool = False) -> dict:
136
137
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
138
        Used for dumping results alongside full task configuration
139

haileyschoelkopf's avatar
haileyschoelkopf committed
140
141
142
143
144
145
146
147
148
149
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
150
151
152
153
154
155
156
157
158
159
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
160
        return cfg_dict
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

178
179
180
181
182
183
184
185
186
187
188

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

189
    VERSION: Optional[Union[int, str]] = None
190

191
192
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
193
    DATASET_PATH: Optional[str] = None
194
195

    # The name of a subset within `DATASET_PATH`.
196
    DATASET_NAME: Optional[str] = None
197

198
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
199

200
201
    def __init__(
        self,
202
203
204
205
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
206
    ) -> None:
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
229
230
231
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
232

233
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
234

lintangsutawika's avatar
lintangsutawika committed
235
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
236
237
238
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
239

240
241
242
243
244
245
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
270
271
272
273
274
275
276
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
277

278
    @property
279
    def config(self) -> TaskConfig:
280
281
282
        """Returns the TaskConfig associated with this class."""
        return self._config

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

298
    def training_docs(self) -> Iterable:
299
300
301
302
303
304
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

305
    def validation_docs(self) -> Iterable:
306
307
308
309
310
311
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

312
    def test_docs(self) -> Iterable:
313
314
315
316
317
318
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

319
    def fewshot_docs(self) -> Iterable:
320
321
322
323
324
325
326
327
328
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
329
330
331
332
333
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
334
335
            return self.test_docs()

336
    def _process_doc(self, doc: dict) -> dict:
337
338
339
340
341
342
343
344
345
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
346

347
    @property
348
    def instances(self) -> List[Instance]:
349
350
351
352
353
354
355
356
357
358
359
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

360
361
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
362
363
364
365
366
367
368
369
370
371
372
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

373
374
375
376
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

377
378
379
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
380
381
382
    def doc_to_prefix(self, doc):
        return ""

383
384
    def build_all_requests(
        self,
385
        *,
386
387
388
389
390
391
392
393
394
395
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
396
    ) -> None:
397
        """Build a set of Instances for a task, and store them in task.instances"""
398
399
400
401

        # used with caching
        og_limit = limit

402
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
403
404
405
406
407
408
409
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
410
        cache_key += f"-tokenizer{tokenizer_name}"
411

Baber Abbasi's avatar
Baber Abbasi committed
412
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
413
414
415
416
417
418
419
420
421
422
423
424
425

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
426
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
427

428
        instances = []
429
430
431
432
433
434
435
436
437
438

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
439
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
440
441
442
443
444
445
446
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
447
        ):
448
            # sample fewshot context #TODO: need to offset doc_id by rank now!
449
            fewshot_ctx = self.fewshot_context(
450
                doc,
451
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
452
453
454
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
455
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
456
                gen_prefix=self.doc_to_prefix(doc),
457
            )
458

459
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
460
461
462
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
463
                metadata=(self.config["task"], doc_id, self.config.repeats),
464
                apply_chat_template=apply_chat_template,
465
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
466
            )
467
468
469
470

            if not isinstance(inst, list):
                inst = [inst]

471
472
473
474
475
476
477
478
479
480
481
482
483
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
484

485
486
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
487

488
489
490
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
507
            The number of times each instance in a dataset is inferred on. Defaults to 1,
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

543
544
545
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
546
547
548
549
550
551
552
553
554
555
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

556
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
557
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
558
559
560
561
562
563
564
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
565
566
567
568
569
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
570
571
572
        :returns: str
            The fewshot context.
        """
573
        if rnd is None:
574
575
576
577
578
579
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
580

581
        description = description if description else ""
582
583

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
584
            labeled_examples = ""
585
        else:
lintangsutawika's avatar
lintangsutawika committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
610
            )
611
612

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
613
        return description + labeled_examples + example
614

615
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
616
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
617
618
        if hasattr(self, "_filters"):
            for f in self._filters:
619
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
620
621
622
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
623

baberabb's avatar
baberabb committed
624
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
625
        """Returns the config as a dictionary."""
626
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
627
        # (num_fewshot)
628
        return self.config.to_dict()
629

Baber Abbasi's avatar
Baber Abbasi committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

670
671
672
673
674
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

675
676
677
678
679
680
681
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
682
683
684
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
685
686
687
688
689
690
691
692
693
694
695
696
697

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

698
699

class ConfigurableTask(Task):
700
    VERSION = "Yaml"
701
    OUTPUT_TYPE = None
702
    CONFIG = None
703
704

    def __init__(
705
706
707
708
709
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
710
    ) -> None:  # TODO no super() call here
711
        # Get pre-configured attributes
712
        self._config = self.CONFIG
713

714
        # Use new configurations if there was no preconfiguration
715
        if self.config is None:
716
            self._config = TaskConfig(**config)
717
718
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
719
            if config is not None:
720
                self._config.__dict__.update(config)
721

722
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
723
724
725
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
726

727
728
729
730
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

731
        if self.config.output_type is not None:
732
733
734
735
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
736
            self.OUTPUT_TYPE = self.config.output_type
737

738
739
740
741
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

742
743
744
745
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
746
747
748
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

749
750
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
751

752
753
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
754

755
756
757
758
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
759

760
        if self.config.metric_list is None:
761
            # TODO: handle this in TaskConfig.__post_init__ ?
762
763
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

764
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
765
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
766
                self._metric_fn_kwargs[metric_name] = {}
767
768
769
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
770
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
771
        else:
772
            for metric_config in self.config.metric_list:
773
774
775
776
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
777
778
779
780
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
781
782
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
783
                }
Chris's avatar
Chris committed
784
785
786
787
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
788

789
                if self.config.process_results is not None:
790
791
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
792
793
794
795
796
797
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
798
799
800
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
801
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
802

803
                if "aggregation" in metric_config:
804
                    agg_name = metric_config["aggregation"]
805
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
806
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
807
                    elif callable(agg_name):  # noqa: E721
808
809
810
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
811
                else:
812
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
813
                    metric_agg = get_metric_aggregation(metric_name)
814
                    eval_logger.warning(
815
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
816
817
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
818
                    )
819
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
820

821
822
823
824
825
826
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
827
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
828
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
829
                        f"higher_is_better={is_higher_better(metric_name)}"
830
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
831
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
832

833
        self.download(self.config.dataset_kwargs)
834
835
836
        self._training_docs = None
        self._fewshot_docs = None

837
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
838
            self._filters = []
839
            for filter_config in self.config.filter_list:
840
841
842
843
844
845
846
847
848
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
849
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
850
        else:
Baber Abbasi's avatar
Baber Abbasi committed
851
852
853
854
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
855
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
856

857
858
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
859
            self.prompt = get_prompt(
860
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
861
            )
862
863
864
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
865
        if self.fewshot_docs() is not None:
866
867
868
869
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
870
871
872
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
889

890
        self.task_docs = self.eval_docs
891

892
        # Test One Doc
893
        self.features = list(self.task_docs.features.keys())
894
895
        self.multiple_input = 0
        self.multiple_target = 0
896
        test_doc = self.task_docs[0]
897
        test_text = self.doc_to_text(test_doc)
898
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
899

900
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
901
            test_choice = self.doc_to_choice(test_doc)
902
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
903
                eval_logger.error("doc_to_choice must return list")
904
905
            else:
                num_choice = len(test_choice)
906

907
            if isinstance(test_text, int):
908
                self.multiple_input = num_choice
909
910
        else:
            test_choice = None
911

912
        if isinstance(test_target, list):
913
            self.multiple_target = len(test_target)
914
        else:
915
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
916
                test_target = test_choice[test_target]
917
            else:
lintangsutawika's avatar
lintangsutawika committed
918
                test_target = str(test_target)
919

920
921
922
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
923
            check_choices = [test_target]
924
925
926
927
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
928
929
                    True
                    if self.config.target_delimiter.rstrip()
930
                    != self.config.target_delimiter
931
                    else False
932
                )
933

934
                if delimiter_has_whitespace and choice_has_whitespace:
935
936
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
937
938
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
939
                    eval_logger.debug(
940
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
941
942
                    )

Baber Abbasi's avatar
Baber Abbasi committed
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
960

baberabb's avatar
baberabb committed
961
    def has_training_docs(self) -> bool:
962
        if self.config.training_split is not None:
963
964
965
966
            return True
        else:
            return False

baberabb's avatar
baberabb committed
967
    def has_validation_docs(self) -> bool:
968
        if self.config.validation_split is not None:
969
970
971
972
            return True
        else:
            return False

baberabb's avatar
baberabb committed
973
    def has_test_docs(self) -> bool:
974
        if self.config.test_split is not None:
975
976
977
978
            return True
        else:
            return False

baberabb's avatar
baberabb committed
979
    def training_docs(self) -> datasets.Dataset:
980
        if self.has_training_docs():
981
982
983
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
984
                )
985
            return self.dataset[self.config.training_split]
986

baberabb's avatar
baberabb committed
987
    def validation_docs(self) -> datasets.Dataset:
988
        if self.has_validation_docs():
989
990
991
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
992
                )
993
            return self.dataset[self.config.validation_split]
994

baberabb's avatar
baberabb committed
995
    def test_docs(self) -> datasets.Dataset:
996
        if self.has_test_docs():
997
998
999
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1000

1001
    def fewshot_docs(self):
1002
        if self.config.fewshot_split is not None:
1003
1004
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1005
            return self.dataset[self.config.fewshot_split]
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1018
        else:
1019
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1020
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1021
                    f"[Task: {self.config.task}] "
1022
1023
1024
1025
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1026

KonradSzafer's avatar
KonradSzafer committed
1027
1028
1029
1030
1031
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1032
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1048
1049
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1050

lintangsutawika's avatar
lintangsutawika committed
1051
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1052
1053
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1054
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1055
1056
1057
1058
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1059
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1060
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1061
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1062
1063
1064
1065
1066
1067
1068
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1069
1070
1071
1072
1073
1074
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1075
1076
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1077
1078
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1079
1080
1081
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1082
1083
1084
1085
1086
1087
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1088
1089
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1090

KonradSzafer's avatar
KonradSzafer committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1100
        else:
KonradSzafer's avatar
KonradSzafer committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1114
1115
1116
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1117
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1118
1119
1120
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1121
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1122
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1123
                )
lintangsutawika's avatar
lintangsutawika committed
1124
1125

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1126
1127
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1128
                # TODO: append prefill?
1129
1130
                if not labeled_examples:
                    return ""
1131
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1132
1133
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1134
1135
1136
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1137
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1138
1139
1140
1141
1142
1143
1144
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1145
1146
1147
1148
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1149
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1150
1151
1152
1153
1154
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1155
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1156
1157
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1158
1159
1160
1161
1162
1163
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1164
1165
1166
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1167
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1168
1169
1170
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1171
1172
1173
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1174
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1175
1176
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1177
1178
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1179
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1180
            )
1181
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1182
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1183
1184
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1185
1186
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1187
1188
            if self.multiple_input:
                return labeled_examples
1189
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1190
                return labeled_examples + example + prefix
1191
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1192
                return [labeled_examples + ex + prefix for ex in example]
1193
1194
1195
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1196
                    return labeled_examples + choices[example] + prefix
1197
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1198
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1199

Baber Abbasi's avatar
Baber Abbasi committed
1200
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1201
        """Iterates over FilterEnsembles and applies them to instances"""
1202
1203
        if hasattr(self, "_filters"):
            for f in self._filters:
1204
                f.apply(self._instances)
1205
1206
1207
1208
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1209
    def should_decontaminate(self):
1210
        return self.config.should_decontaminate
1211

Baber Abbasi's avatar
Baber Abbasi committed
1212
    def doc_to_decontamination_query(self, doc: dict):
1213
        if self.config.should_decontaminate:
1214
1215
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1216
            else:
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1228

1229
    def _process_doc(self, doc: dict) -> dict:
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1240
    def doc_to_text(self, doc, doc_to_text=None):
1241
1242
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1243
1244
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1245
        else:
1246
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1247

1248
        if isinstance(doc_to_text, int):
1249
            return doc_to_text
1250
        elif isinstance(doc_to_text, str):
1251
            if doc_to_text in self.features:
1252
                # if self.config.doc_to_choice is not None:
1253
1254
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1255
1256
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1257
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1258
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1259
1260
1261
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1262
        elif callable(doc_to_text):
1263
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1264
        # Used when applying a Promptsource template
1265
        elif hasattr(doc_to_text, "apply"):
1266
1267
1268
1269
1270
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1271
                return self.config.fewshot_delimiter
1272
        else:
1273
            print(type(doc_to_text))
1274
            raise TypeError
1275

Yu Shi Jie's avatar
Yu Shi Jie committed
1276
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1277
1278
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1279
1280
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1281
        else:
1282
            doc_to_target = self.config.doc_to_target
1283

1284
        if isinstance(doc_to_target, int):
1285
            return doc_to_target
1286
        elif isinstance(doc_to_target, str):
1287
            if doc_to_target in self.features:
1288
                # if self.config.doc_to_choice is not None:
1289
1290
1291
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1292
            else:
lintangsutawika's avatar
lintangsutawika committed
1293
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1294
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1295
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1296
1297
1298
1299
1300
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1301
1302
1303
1304
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1305
1306
                else:
                    return target_string
1307
        elif isinstance(doc_to_target, list):
1308
            return doc_to_target
1309
        elif callable(doc_to_target):
1310
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1311
        # Used when applying a Promptsource template
1312
        elif hasattr(doc_to_target, "apply"):
1313
            applied_prompt = doc_to_target.apply(doc)
1314
1315
1316
1317
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1318
                return self.config.fewshot_delimiter
1319
1320
        else:
            raise TypeError
1321

Yu Shi Jie's avatar
Yu Shi Jie committed
1322
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1323
1324
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1325
1326
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1327
        elif self.config.doc_to_choice is None:
1328
1329
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1330
            doc_to_choice = self.config.doc_to_choice
1331

1332
        if isinstance(doc_to_choice, str):
1333
1334
1335
1336
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1337
        elif isinstance(doc_to_choice, list):
1338
            return doc_to_choice
1339
        elif isinstance(doc_to_choice, dict):
1340
1341
1342
1343
1344
1345
1346
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1347

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1394
1395
1396
1397
1398
1399
1400
1401
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1402
1403
1404
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1405
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1406
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1407

1408
1409
        aux_arguments = None

1410
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1411
            arguments = (ctx, self.doc_to_target(doc))
1412
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1413
            arguments = (self.doc_to_target(doc),)
1414
        elif self.OUTPUT_TYPE == "multiple_choice":
1415
            choices = self.doc_to_choice(doc)
1416
            target_delimiter = self.config.target_delimiter
1417
1418
            if apply_chat_template:
                target_delimiter = ""
1419
1420
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1421
                # apply chat_template to choices if apply_chat_template
1422
                cont = self.doc_to_target(doc)
1423

1424
                arguments = [
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1435
                ]
1436
            else:
1437
                # Otherwise they are placed in the continuation
1438
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1439

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1464
1465
1466
1467
1468
1469
1470
1471
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1472
1473
1474
1475
1476
1477
1478
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1479
            request_list = [
1480
1481
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1482
                    doc=doc,
1483
                    arguments=arg,
1484
                    idx=i,
1485
1486
                    **kwargs,
                )
1487
                for i, arg in enumerate(arguments)
1488
            ]
1489
1490

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1491

lintangsutawika's avatar
lintangsutawika committed
1492
        return Instance(
1493
1494
1495
1496
1497
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1498
        )
1499
1500

    def process_results(self, doc, results):
1501
1502
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1503

1504
        result_dict = {}
1505
        use_metric = list(self._metric_fn_list.keys())
1506
1507
1508
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1509
1510
1511
1512
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1513
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1514
            (loglikelihood,) = results
1515
1516
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1517
            return {
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1533
            }
1534
        elif self.OUTPUT_TYPE == "multiple_choice":
1535
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1536

1537
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1538
            choices = self.doc_to_choice(doc)
1539
1540
            completion_len = np.array([float(len(i)) for i in choices])

1541
1542
            if (
                2 * len(choices) == len(lls)
1543
                and "acc_mutual_info" in self._metric_fn_list.keys()
1544
1545
1546
1547
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1548
1549
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1550
1551
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1552

1553
1554
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1555

1556
1557
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1558
            else:
1559
                gold = self.doc_to_target(doc)
1560
1561

            gold_index_error = False
1562
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1563
1564
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1565
1566
                    gold_index_error = True
            else:
1567
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1568
                    gold = gold if gold < len(choices) else -100
1569
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1570
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1571

Lintang Sutawika's avatar
Lintang Sutawika committed
1572
                if gold == -100:
1573
1574
1575
1576
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1577
                    f"Label index was not in within range of available choices,"
1578
1579
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1580

1581
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1582
1583
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1584
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1585
1586
1587
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1588
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1589
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1590

Lintang Sutawika's avatar
Lintang Sutawika committed
1591
1592
1593
1594
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1595
            result_dict = {
1596
                **({"acc": acc} if "acc" in use_metric else {}),
1597
1598
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1599
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1600
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1601
1602
1603
1604
1605
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1606
1607
            }

1608
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1609
1610
1611
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1612
1613
1614
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1615
        elif self.OUTPUT_TYPE == "generate_until":
1616
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1617
            result = results[0]
1618
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1619
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1620
                # it assumes that doc_to_target returns a number.
1621
1622
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1623
1624
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1625
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1626
1627
1628
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1629
            ):
Chris's avatar
Chris committed
1630
1631
                # cast gold to the same type as result
                gold = type(result)(gold)
1632

lintangsutawika's avatar
lintangsutawika committed
1633
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1634
1635
1636
1637
1638
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1639
1640
1641
1642
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1643
1644
1645
1646
1647
1648
1649
1650
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1651
                    else:
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1673
                else:
1674
                    try:
1675
                        result_score = self._metric_fn_list[metric](
1676
1677
                            references=[gold],
                            predictions=[result],
1678
                            **self._metric_fn_kwargs[metric],
1679
                        )
1680
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1681
                        result_score = self._metric_fn_list[metric]([gold, result])
1682
1683
1684
1685
1686
1687
1688
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1689
        else:
lintangsutawika's avatar
lintangsutawika committed
1690
1691
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1692
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1693
            )
1694
1695
1696

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1697
    def aggregation(self) -> dict:
1698
1699
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1700
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1701
        return self._higher_is_better
1702

Baber Abbasi's avatar
Baber Abbasi committed
1703
1704
1705
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1706
1707
1708
1709
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1710
1711
1712
1713
1714
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1715
            f"num_samples={len(self.eval_docs)})"
1716
1717
        )

1718
1719

class MultipleChoiceTask(Task):
1720
    OUTPUT_TYPE = "loglikelihood"
1721

baberabb's avatar
baberabb committed
1722
    def doc_to_target(self, doc: dict) -> str:
1723
1724
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1725
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1726
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1727
1728
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1729
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1730
                doc=doc,
1731
                arguments=(ctx, " {}".format(choice)),
1732
                idx=i,
1733
1734
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1735
1736
            for i, choice in enumerate(doc["choices"])
        ]
1737

1738
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1739
1740
1741
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1753
    def higher_is_better(self) -> dict:
1754
1755
1756
1757
1758
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1759
    def aggregation(self) -> dict:
1760
1761
1762
1763
1764
1765
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1766
class PerplexityTask(Task):
1767
1768
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1769
    def has_training_docs(self) -> bool:
1770
1771
        return False

baberabb's avatar
baberabb committed
1772
    def fewshot_examples(self, k: int, rnd) -> List:
1773
1774
1775
1776
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1777
1778
        return []

baberabb's avatar
baberabb committed
1779
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1780
1781
1782
1783
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1784
1785
1786

        return ""

baberabb's avatar
baberabb committed
1787
    def higher_is_better(self) -> dict:
1788
1789
1790
1791
1792
1793
1794
1795
1796
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1797
    def doc_to_text(self, doc) -> str:
1798
1799
1800
1801
1802
        return ""

    def doc_to_target(self, doc):
        return doc

1803
1804
1805
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1806

lintangsutawika's avatar
lintangsutawika committed
1807
1808
1809
1810
1811
1812
1813
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1814

1815
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1816
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1817
1818
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1819
1820
1821
1822
1823
1824
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1825
    def aggregation(self) -> dict:
1826
1827
1828
1829
1830
1831
1832
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1833
    def count_bytes(cls, doc) -> int:
1834
1835
1836
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1837
    def count_words(cls, doc) -> int:
1838
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1839
        return len(re.split(r"\s+", doc))