task.py 69.8 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

Lintang Sutawika's avatar
Lintang Sutawika committed
51
eval_logger = logging.getLogger(__name__)
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
78
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
79
    unsafe_code: bool = False
80
81
82
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
83
    description: str = ""
84
85
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
86
    fewshot_config: Optional[dict] = None
87
    # runtime configuration options
88
    num_fewshot: Optional[int] = None
89
    # scoring options
90
91
92
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
93
    repeats: int = 1
94
    filter_list: Optional[Union[str, list]] = None
95
    should_decontaminate: bool = False
96
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
97
    gen_prefix: Optional[str] = None
98
99
100
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
101

Ethan Smith's avatar
Ethan Smith committed
102
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
103
        if self.generation_kwargs is not None:
104
            if self.output_type != "generate_until":
105
                eval_logger.warning(
106
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113
114
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
        else:
117
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
120
121
122
123
124
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
125
126
                    "do_sample": False,
                }
127

128
129
130
    def __getitem__(self, item):
        return getattr(self, item)

131
132
133
    def __setitem__(self, item, value):
        return setattr(self, item, value)

134
    def to_dict(self, keep_callable: bool = False) -> dict:
135
136
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
137
        Used for dumping results alongside full task configuration
138

haileyschoelkopf's avatar
haileyschoelkopf committed
139
140
141
142
143
144
145
146
147
148
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
149
150
151
152
153
154
155
156
157
158
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
159
        return cfg_dict
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

177
178
179
180
181
182
183
184
185
186
187

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

188
    VERSION: Optional[Union[int, str]] = None
189

190
191
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
192
    DATASET_PATH: Optional[str] = None
193
194

    # The name of a subset within `DATASET_PATH`.
195
    DATASET_NAME: Optional[str] = None
196

197
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
198

199
200
    def __init__(
        self,
201
202
203
204
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
205
    ) -> None:
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
228
229
230
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
231

232
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
233

lintangsutawika's avatar
lintangsutawika committed
234
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
235
236
237
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
238

239
240
241
242
243
244
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
269
270
271
272
273
274
275
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
276

277
    @property
278
    def config(self) -> TaskConfig:
279
280
281
        """Returns the TaskConfig associated with this class."""
        return self._config

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

297
    def training_docs(self) -> Iterable:
298
299
300
301
302
303
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

304
    def validation_docs(self) -> Iterable:
305
306
307
308
309
310
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

311
    def test_docs(self) -> Iterable:
312
313
314
315
316
317
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

318
    def fewshot_docs(self) -> Iterable:
319
320
321
322
323
324
325
326
327
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
328
            eval_logger.warning(
329
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
330
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
331
            )
332
333
            return self.test_docs()

334
    def _process_doc(self, doc: dict) -> dict:
335
336
337
338
339
340
341
342
343
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
344

345
    @property
346
    def instances(self) -> List[Instance]:
347
348
349
350
351
352
353
354
355
356
357
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

358
359
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
360
361
362
363
364
365
366
367
368
369
370
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

371
372
373
374
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

375
376
377
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
378
379
380
    def doc_to_prefix(self, doc):
        return ""

381
382
    def build_all_requests(
        self,
383
        *,
384
385
386
387
388
389
390
391
392
393
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
394
    ) -> None:
395
        """Build a set of Instances for a task, and store them in task.instances"""
396
397
398
399

        # used with caching
        og_limit = limit

400
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
401
402
403
404
405
406
407
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
408
        cache_key += f"-tokenizer{tokenizer_name}"
409

Baber Abbasi's avatar
Baber Abbasi committed
410
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
411
412
413
414
415
416
417
418
419
420
421
422
423

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
424
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
425

426
        instances = []
427
428
429
430
431
432
433
434
435
436

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
437
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
438
439
440
441
442
443
444
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
445
        ):
446
            # sample fewshot context #TODO: need to offset doc_id by rank now!
447
            fewshot_ctx = self.fewshot_context(
448
                doc,
449
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
450
451
452
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
453
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
454
                gen_prefix=self.doc_to_prefix(doc),
455
            )
456

457
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
458
459
460
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
461
                metadata=(self.config["task"], doc_id, self.config.repeats),
462
                apply_chat_template=apply_chat_template,
463
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
464
            )
465
466
467
468

            if not isinstance(inst, list):
                inst = [inst]

469
470
471
472
473
474
475
476
477
478
479
480
481
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
482

483
484
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
485

486
487
488
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
505
            The number of times each instance in a dataset is inferred on. Defaults to 1,
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

541
542
543
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
544
545
546
547
548
549
550
551
552
553
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

554
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
555
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
556
557
558
559
560
561
562
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
563
564
565
566
567
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
568
569
570
        :returns: str
            The fewshot context.
        """
571
        if rnd is None:
572
573
574
575
576
577
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
578

579
        description = description if description else ""
580
581

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
582
            labeled_examples = ""
583
        else:
lintangsutawika's avatar
lintangsutawika committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
608
            )
609
610

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
611
        return description + labeled_examples + example
612

613
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
614
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
615
616
        if hasattr(self, "_filters"):
            for f in self._filters:
617
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
618
619
620
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
621

baberabb's avatar
baberabb committed
622
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
623
        """Returns the config as a dictionary."""
624
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
625
        # (num_fewshot)
626
        return self.config.to_dict()
627

Baber Abbasi's avatar
Baber Abbasi committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

668
669
670
671
672
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

673
674
675
676
677
678
679
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
680
681
682
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
683
684
685
686
687
688
689
690
691
692
693
694
695

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

696
697

class ConfigurableTask(Task):
698
    VERSION = "Yaml"
699
    OUTPUT_TYPE = None
700
    CONFIG = None
701
702

    def __init__(
703
704
705
706
707
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
708
    ) -> None:  # TODO no super() call here
709
        # Get pre-configured attributes
710
        self._config = self.CONFIG
711

712
        # Use new configurations if there was no preconfiguration
713
        if self.config is None:
714
            self._config = TaskConfig(**config)
715
716
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
717
            if config is not None:
718
                self._config.__dict__.update(config)
719

720
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
721
722
723
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
724

725
726
727
728
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

729
        if self.config.output_type is not None:
730
731
732
733
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
734
            self.OUTPUT_TYPE = self.config.output_type
735

736
737
738
739
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

740
741
742
743
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
744
745
746
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

747
748
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
749

750
751
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
752

753
754
755
756
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
757

758
        if self.config.metric_list is None:
759
            # TODO: handle this in TaskConfig.__post_init__ ?
760
761
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

762
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
763
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
764
                self._metric_fn_kwargs[metric_name] = {}
765
766
767
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
768
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
769
        else:
770
            for metric_config in self.config.metric_list:
771
772
773
774
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
775
776
777
778
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
779
780
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
781
                }
Chris's avatar
Chris committed
782
783
784
785
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
786

787
                if self.config.process_results is not None:
788
789
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
790
791
792
793
794
795
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
796
797
798
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
799
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
800

801
                if "aggregation" in metric_config:
802
                    agg_name = metric_config["aggregation"]
803
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
804
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
805
                    elif callable(agg_name):  # noqa: E721
806
807
808
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
809
                else:
810
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
811
                    metric_agg = get_metric_aggregation(metric_name)
812
                    eval_logger.warning(
813
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
814
815
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
816
                    )
817
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
818

819
820
821
822
823
824
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
825
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
826
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
827
                        f"higher_is_better={is_higher_better(metric_name)}"
828
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
829
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
830

831
        self.download(self.config.dataset_kwargs)
832
833
834
        self._training_docs = None
        self._fewshot_docs = None

835
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
836
            self._filters = []
837
            for filter_config in self.config.filter_list:
838
839
840
841
842
843
844
845
846
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
847
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
848
        else:
Baber Abbasi's avatar
Baber Abbasi committed
849
850
851
852
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
853
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
854

855
856
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
857
            self.prompt = get_prompt(
858
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
859
            )
860
861
862
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
863
        if self.fewshot_docs() is not None:
864
865
866
867
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
868
869
870
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
887

888
        self.task_docs = self.eval_docs
889

890
        # Test One Doc
891
        self.features = list(self.task_docs.features.keys())
892
893
        self.multiple_input = 0
        self.multiple_target = 0
894
        test_doc = self.task_docs[0]
895
        test_text = self.doc_to_text(test_doc)
896
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
897

898
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
899
            test_choice = self.doc_to_choice(test_doc)
900
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
901
                eval_logger.error("doc_to_choice must return list")
902
903
            else:
                num_choice = len(test_choice)
904

905
            if isinstance(test_text, int):
906
                self.multiple_input = num_choice
907
908
        else:
            test_choice = None
909

910
        if isinstance(test_target, list):
911
            self.multiple_target = len(test_target)
912
        else:
913
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
914
                test_target = test_choice[test_target]
915
            else:
lintangsutawika's avatar
lintangsutawika committed
916
                test_target = str(test_target)
917

918
919
920
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
921
            check_choices = [test_target]
922
923
924
925
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
926
927
                    True
                    if self.config.target_delimiter.rstrip()
928
                    != self.config.target_delimiter
929
                    else False
930
                )
931

932
                if delimiter_has_whitespace and choice_has_whitespace:
933
934
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
935
936
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
937
                    eval_logger.debug(
938
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
939
940
                    )

941
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
942
943
944
945
946
947
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
948
    def has_training_docs(self) -> bool:
949
        if self.config.training_split is not None:
950
951
952
953
            return True
        else:
            return False

baberabb's avatar
baberabb committed
954
    def has_validation_docs(self) -> bool:
955
        if self.config.validation_split is not None:
956
957
958
959
            return True
        else:
            return False

baberabb's avatar
baberabb committed
960
    def has_test_docs(self) -> bool:
961
        if self.config.test_split is not None:
962
963
964
965
            return True
        else:
            return False

baberabb's avatar
baberabb committed
966
    def training_docs(self) -> datasets.Dataset:
967
        if self.has_training_docs():
968
969
970
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
971
                )
972
            return self.dataset[self.config.training_split]
973

baberabb's avatar
baberabb committed
974
    def validation_docs(self) -> datasets.Dataset:
975
        if self.has_validation_docs():
976
977
978
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
979
                )
980
            return self.dataset[self.config.validation_split]
981

baberabb's avatar
baberabb committed
982
    def test_docs(self) -> datasets.Dataset:
983
        if self.has_test_docs():
984
985
986
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
987

988
    def fewshot_docs(self):
989
        if self.config.fewshot_split is not None:
990
991
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
992
            return self.dataset[self.config.fewshot_split]
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1005
        else:
1006
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1007
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1008
                    f"[Task: {self.config.task}] "
1009
1010
1011
1012
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1013

KonradSzafer's avatar
KonradSzafer committed
1014
1015
1016
1017
1018
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1019
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1035
1036
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1037

lintangsutawika's avatar
lintangsutawika committed
1038
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1039
1040
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1041
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1042
1043
1044
1045
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1046
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1047
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1048
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1049
1050
1051
1052
1053
1054
1055
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1056
1057
1058
1059
1060
1061
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1062
1063
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1064
1065
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1066
1067
1068
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1069
1070
1071
1072
1073
1074
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1075
1076
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1077

KonradSzafer's avatar
KonradSzafer committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1087
        else:
KonradSzafer's avatar
KonradSzafer committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1101
1102
1103
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1104
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1105
1106
1107
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1108
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1109
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1110
                )
lintangsutawika's avatar
lintangsutawika committed
1111
1112

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1113
1114
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1115
                # TODO: append prefill?
1116
1117
                if not labeled_examples:
                    return ""
1118
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1119
1120
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1121
1122
1123
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1124
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1125
1126
1127
1128
1129
1130
1131
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1132
1133
1134
1135
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1136
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1137
1138
1139
1140
1141
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1142
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1143
1144
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1145
1146
1147
1148
1149
1150
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1151
1152
1153
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1154
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1155
1156
1157
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1158
1159
1160
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1161
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1162
1163
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1164
1165
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1166
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1167
            )
1168
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1169
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1170
1171
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1172
1173
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1174
1175
            if self.multiple_input:
                return labeled_examples
1176
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1177
                return labeled_examples + example + prefix
1178
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1179
                return [labeled_examples + ex + prefix for ex in example]
1180
1181
1182
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1183
                    return labeled_examples + choices[example] + prefix
1184
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1185
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1186

Baber Abbasi's avatar
Baber Abbasi committed
1187
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1188
        """Iterates over FilterEnsembles and applies them to instances"""
1189
1190
        if hasattr(self, "_filters"):
            for f in self._filters:
1191
                f.apply(self._instances)
1192
1193
1194
1195
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1196
    def should_decontaminate(self):
1197
        return self.config.should_decontaminate
1198

Baber Abbasi's avatar
Baber Abbasi committed
1199
    def doc_to_decontamination_query(self, doc: dict):
1200
        if self.config.should_decontaminate:
1201
1202
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1203
            else:
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1215

1216
    def _process_doc(self, doc: dict) -> dict:
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1227
    def doc_to_text(self, doc, doc_to_text=None):
1228
1229
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1230
1231
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1232
        else:
1233
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1234

1235
        if isinstance(doc_to_text, int):
1236
            return doc_to_text
1237
        elif isinstance(doc_to_text, str):
1238
            if doc_to_text in self.features:
1239
                # if self.config.doc_to_choice is not None:
1240
1241
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1242
1243
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1244
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1245
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1246
1247
1248
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1249
        elif callable(doc_to_text):
1250
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1251
        # Used when applying a Promptsource template
1252
        elif hasattr(doc_to_text, "apply"):
1253
1254
1255
1256
1257
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1258
                return self.config.fewshot_delimiter
1259
        else:
1260
            print(type(doc_to_text))
1261
            raise TypeError
1262

Yu Shi Jie's avatar
Yu Shi Jie committed
1263
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1264
1265
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1266
1267
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1268
        else:
1269
            doc_to_target = self.config.doc_to_target
1270

1271
        if isinstance(doc_to_target, int):
1272
            return doc_to_target
1273
        elif isinstance(doc_to_target, str):
1274
            if doc_to_target in self.features:
1275
                # if self.config.doc_to_choice is not None:
1276
1277
1278
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1279
            else:
lintangsutawika's avatar
lintangsutawika committed
1280
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1281
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1282
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1283
1284
1285
1286
1287
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1288
1289
1290
1291
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1292
1293
                else:
                    return target_string
1294
        elif isinstance(doc_to_target, list):
1295
            return doc_to_target
1296
        elif callable(doc_to_target):
1297
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1298
        # Used when applying a Promptsource template
1299
        elif hasattr(doc_to_target, "apply"):
1300
            applied_prompt = doc_to_target.apply(doc)
1301
1302
1303
1304
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1305
                return self.config.fewshot_delimiter
1306
1307
        else:
            raise TypeError
1308

Yu Shi Jie's avatar
Yu Shi Jie committed
1309
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1310
1311
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1312
1313
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1314
        elif self.config.doc_to_choice is None:
1315
1316
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1317
            doc_to_choice = self.config.doc_to_choice
1318

1319
        if isinstance(doc_to_choice, str):
1320
1321
1322
1323
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1324
        elif isinstance(doc_to_choice, list):
1325
            return doc_to_choice
1326
        elif isinstance(doc_to_choice, dict):
1327
1328
1329
1330
1331
1332
1333
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1334

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1381
1382
1383
1384
1385
1386
1387
1388
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1389
1390
1391
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1392
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1393
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1394

1395
1396
        aux_arguments = None

1397
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1398
            arguments = (ctx, self.doc_to_target(doc))
1399
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1400
            arguments = (self.doc_to_target(doc),)
1401
        elif self.OUTPUT_TYPE == "multiple_choice":
1402
            choices = self.doc_to_choice(doc)
1403
            target_delimiter = self.config.target_delimiter
1404
1405
            if apply_chat_template:
                target_delimiter = ""
1406
1407
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1408
                # apply chat_template to choices if apply_chat_template
1409
                cont = self.doc_to_target(doc)
1410

1411
                arguments = [
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1422
                ]
1423
            else:
1424
                # Otherwise they are placed in the continuation
1425
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1426

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1451
1452
1453
1454
1455
1456
1457
1458
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1459
1460
1461
1462
1463
1464
1465
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1466
            request_list = [
1467
1468
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1469
                    doc=doc,
1470
                    arguments=arg,
1471
                    idx=i,
1472
1473
                    **kwargs,
                )
1474
                for i, arg in enumerate(arguments)
1475
            ]
1476
1477

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1478

lintangsutawika's avatar
lintangsutawika committed
1479
        return Instance(
1480
1481
1482
1483
1484
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1485
        )
1486
1487

    def process_results(self, doc, results):
1488
1489
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1490

1491
        result_dict = {}
1492
        use_metric = list(self._metric_fn_list.keys())
1493
1494
1495
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1496
1497
1498
1499
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1500
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1501
            (loglikelihood,) = results
1502
1503
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1504
            return {
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1520
            }
1521
        elif self.OUTPUT_TYPE == "multiple_choice":
1522
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1523

1524
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1525
            choices = self.doc_to_choice(doc)
1526
1527
            completion_len = np.array([float(len(i)) for i in choices])

1528
1529
            if (
                2 * len(choices) == len(lls)
1530
                and "acc_mutual_info" in self._metric_fn_list.keys()
1531
1532
1533
1534
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1535
1536
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1537
1538
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1539

1540
1541
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1542

1543
1544
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1545
            else:
1546
                gold = self.doc_to_target(doc)
1547
1548

            gold_index_error = False
1549
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1550
1551
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1552
1553
                    gold_index_error = True
            else:
1554
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1555
                    gold = gold if gold < len(choices) else -100
1556
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1557
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1558

Lintang Sutawika's avatar
Lintang Sutawika committed
1559
                if gold == -100:
1560
1561
1562
1563
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1564
                    f"Label index was not in within range of available choices,"
1565
1566
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1567

1568
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1569
1570
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1571
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1572
1573
1574
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1575
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1576
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1577

Lintang Sutawika's avatar
Lintang Sutawika committed
1578
1579
1580
1581
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1582
            result_dict = {
1583
                **({"acc": acc} if "acc" in use_metric else {}),
1584
1585
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1586
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1587
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1588
1589
1590
1591
1592
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1593
1594
            }

1595
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1596
1597
1598
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1599
1600
1601
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1602
        elif self.OUTPUT_TYPE == "generate_until":
1603
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1604
            result = results[0]
1605
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1606
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1607
                # it assumes that doc_to_target returns a number.
1608
1609
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1610
1611
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1612
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1613
1614
1615
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1616
            ):
Chris's avatar
Chris committed
1617
1618
                # cast gold to the same type as result
                gold = type(result)(gold)
1619

lintangsutawika's avatar
lintangsutawika committed
1620
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1621
1622
1623
1624
1625
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1626
1627
1628
1629
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1630
1631
1632
1633
1634
1635
1636
1637
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1638
                    else:
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1660
                else:
1661
                    try:
1662
                        result_score = self._metric_fn_list[metric](
1663
1664
                            references=[gold],
                            predictions=[result],
1665
                            **self._metric_fn_kwargs[metric],
1666
                        )
1667
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1668
                        result_score = self._metric_fn_list[metric]([gold, result])
1669
1670
1671
1672
1673
1674
1675
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1676
        else:
lintangsutawika's avatar
lintangsutawika committed
1677
1678
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1679
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1680
            )
1681
1682
1683

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1684
    def aggregation(self) -> dict:
1685
1686
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1687
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1688
        return self._higher_is_better
1689

Baber Abbasi's avatar
Baber Abbasi committed
1690
1691
1692
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1693
1694
1695
1696
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1697
1698
1699
1700
1701
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1702
            f"num_samples={len(self.eval_docs)})"
1703
1704
        )

1705
1706

class MultipleChoiceTask(Task):
1707
    OUTPUT_TYPE = "loglikelihood"
1708

baberabb's avatar
baberabb committed
1709
    def doc_to_target(self, doc: dict) -> str:
1710
1711
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1712
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1713
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1714
1715
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1716
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1717
                doc=doc,
1718
                arguments=(ctx, " {}".format(choice)),
1719
                idx=i,
1720
1721
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1722
1723
            for i, choice in enumerate(doc["choices"])
        ]
1724

1725
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1726
1727
1728
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1740
    def higher_is_better(self) -> dict:
1741
1742
1743
1744
1745
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1746
    def aggregation(self) -> dict:
1747
1748
1749
1750
1751
1752
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1753
class PerplexityTask(Task):
1754
1755
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1756
    def has_training_docs(self) -> bool:
1757
1758
        return False

baberabb's avatar
baberabb committed
1759
    def fewshot_examples(self, k: int, rnd) -> List:
1760
1761
1762
1763
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1764
1765
        return []

baberabb's avatar
baberabb committed
1766
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1767
1768
1769
1770
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1771
1772
1773

        return ""

baberabb's avatar
baberabb committed
1774
    def higher_is_better(self) -> dict:
1775
1776
1777
1778
1779
1780
1781
1782
1783
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1784
    def doc_to_text(self, doc) -> str:
1785
1786
1787
1788
1789
        return ""

    def doc_to_target(self, doc):
        return doc

1790
1791
1792
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1793

lintangsutawika's avatar
lintangsutawika committed
1794
1795
1796
1797
1798
1799
1800
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1801

1802
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1803
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1804
1805
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1806
1807
1808
1809
1810
1811
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1812
    def aggregation(self) -> dict:
1813
1814
1815
1816
1817
1818
1819
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1820
    def count_bytes(cls, doc) -> int:
1821
1822
1823
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1824
    def count_words(cls, doc) -> int:
1825
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1826
        return len(re.split(r"\s+", doc))