task.py 67.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
78
    unsafe_code: bool = False
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
96
    assistant_prefill: Optional[str] = None
97
98
99
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
100

Ethan Smith's avatar
Ethan Smith committed
101
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
102
        if self.generation_kwargs is not None:
103
            if self.output_type != "generate_until":
104
                eval_logger.warning(
105
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112
113
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
119
120
121
122
123
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
                    "do_sample": False,
                }
126

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self, keep_callable: bool = False) -> dict:
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
148
149
150
151
152
153
154
155
156
157
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
158
        return cfg_dict
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

176
177
178
179
180
181
182
183
184
185
186

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

187
    VERSION: Optional[Union[int, str]] = None
188

189
190
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
191
    DATASET_PATH: Optional[str] = None
192
193

    # The name of a subset within `DATASET_PATH`.
194
    DATASET_NAME: Optional[str] = None
195

196
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
197

198
199
    def __init__(
        self,
200
201
202
203
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
204
    ) -> None:
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
227
228
229
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
230

231
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
232

lintangsutawika's avatar
lintangsutawika committed
233
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
234
235
236
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
237

238
239
240
241
242
243
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
268
269
270
271
272
273
274
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
275

276
    @property
277
    def config(self) -> TaskConfig:
278
279
280
        """Returns the TaskConfig associated with this class."""
        return self._config

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

296
    def training_docs(self) -> Iterable:
297
298
299
300
301
302
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

303
    def validation_docs(self) -> Iterable:
304
305
306
307
308
309
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

310
    def test_docs(self) -> Iterable:
311
312
313
314
315
316
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

317
    def fewshot_docs(self) -> Iterable:
318
319
320
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
327
            eval_logger.warning(
328
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
329
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
330
            )
331
332
            return self.test_docs()

333
    def _process_doc(self, doc: dict) -> dict:
334
335
336
337
338
339
340
341
342
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
343

344
    @property
345
    def instances(self) -> List[Instance]:
346
347
348
349
350
351
352
353
354
355
356
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

357
358
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
359
360
361
362
363
364
365
366
367
368
369
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

370
371
372
373
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

374
375
    def build_all_requests(
        self,
376
        *,
377
378
379
380
381
382
383
384
385
386
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
387
    ) -> None:
388
        """Build a set of Instances for a task, and store them in task.instances"""
389
390
391
392

        # used with caching
        og_limit = limit

393
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
394
395
396
397
398
399
400
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
401
        cache_key += f"-tokenizer{tokenizer_name}"
402

Baber Abbasi's avatar
Baber Abbasi committed
403
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
404
405
406
407
408
409
410
411
412
413
414
415
416

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
417
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
418

419
        instances = []
420
421
422
423
424
425
426
427
428
429

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
430
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
431
432
433
434
435
436
437
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
438
        ):
439
            # sample fewshot context #TODO: need to offset doc_id by rank now!
440
            fewshot_ctx = self.fewshot_context(
441
                doc,
442
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
443
444
445
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
446
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
447
                assistant_prefill=self.config.assistant_prefill,
448
            )
449

450
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
451
452
453
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
454
                metadata=(self.config["task"], doc_id, self.config.repeats),
455
                apply_chat_template=apply_chat_template,
lintangsutawika's avatar
lintangsutawika committed
456
            )
457
458
459
460

            if not isinstance(inst, list):
                inst = [inst]

461
462
463
464
465
466
467
468
469
470
471
472
473
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
474

475
476
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
477

478
479
480
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
497
            The number of times each instance in a dataset is inferred on. Defaults to 1,
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

533
534
535
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
536
537
538
539
540
541
542
543
544
545
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

546
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
547
    def fewshot_context(
548
549
550
        self,
        doc,
        num_fewshot,
551
        rnd=None,
552
        description=None,
lintangsutawika's avatar
lintangsutawika committed
553
    ):
554
555
556
557
558
559
560
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
561
562
563
564
565
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
566
567
568
        :returns: str
            The fewshot context.
        """
569
        if rnd is None:
570
571
572
573
574
575
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
576

577
        description = description if description else ""
578
579

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
580
            labeled_examples = ""
581
        else:
lintangsutawika's avatar
lintangsutawika committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
606
            )
607
608

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
609
        return description + labeled_examples + example
610

611
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
612
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
613
614
        if hasattr(self, "_filters"):
            for f in self._filters:
615
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
616
617
618
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
619

baberabb's avatar
baberabb committed
620
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
621
        """Returns the config as a dictionary."""
622
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
623
        # (num_fewshot)
624
        return self.config.to_dict()
625

Baber Abbasi's avatar
Baber Abbasi committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

666
667
668
669
670
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

671
672
673
674
675
676
677
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
678
679
680
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
681
682
683
684
685
686
687
688
689
690
691
692
693

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

694
695

class ConfigurableTask(Task):
696
    VERSION = "Yaml"
697
    OUTPUT_TYPE = None
698
    CONFIG = None
699
700

    def __init__(
701
702
703
704
705
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
706
    ) -> None:  # TODO no super() call here
707
        # Get pre-configured attributes
708
        self._config = self.CONFIG
709

710
        # Use new configurations if there was no preconfiguration
711
        if self.config is None:
712
            self._config = TaskConfig(**config)
713
714
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
715
            if config is not None:
716
                self._config.__dict__.update(config)
717

718
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
719
720
721
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
722

723
724
725
726
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

727
        if self.config.output_type is not None:
728
729
730
731
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
732
            self.OUTPUT_TYPE = self.config.output_type
733

734
735
736
737
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
738
739
740
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

741
742
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
743

744
745
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
746

747
748
749
750
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
751

752
        if self.config.metric_list is None:
753
            # TODO: handle this in TaskConfig.__post_init__ ?
754
755
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

756
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
757
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
758
                self._metric_fn_kwargs[metric_name] = {}
759
760
761
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
762
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
763
        else:
764
            for metric_config in self.config.metric_list:
765
766
767
768
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
769
770
771
772
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
773
774
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
775
                }
Chris's avatar
Chris committed
776
777
778
779
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
780

781
                if self.config.process_results is not None:
782
783
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
784
785
786
787
788
789
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
790
791
792
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
793
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
794

795
                if "aggregation" in metric_config:
796
                    agg_name = metric_config["aggregation"]
797
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
798
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
799
                    elif callable(agg_name):  # noqa: E721
800
801
802
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
803
                else:
804
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
805
                    metric_agg = get_metric_aggregation(metric_name)
806
                    eval_logger.warning(
807
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
808
809
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
810
                    )
811
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
812

813
814
815
816
817
818
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
819
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
820
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
821
                        f"higher_is_better={is_higher_better(metric_name)}"
822
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
823
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
824

825
        self.download(self.config.dataset_kwargs)
826
827
828
        self._training_docs = None
        self._fewshot_docs = None

829
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
830
            self._filters = []
831
            for filter_config in self.config.filter_list:
832
833
834
835
836
837
838
839
840
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
841
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
842
        else:
843
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
844

845
846
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
847
            self.prompt = get_prompt(
848
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
849
            )
850
851
852
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
853
        if self.fewshot_docs() is not None:
854
855
856
857
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
858
859
860
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
877

878
        self.task_docs = self.eval_docs
879

880
        # Test One Doc
881
        self.features = list(self.task_docs.features.keys())
882
883
        self.multiple_input = 0
        self.multiple_target = 0
884
        test_doc = self.task_docs[0]
885
        test_text = self.doc_to_text(test_doc)
886
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
887

888
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
889
            test_choice = self.doc_to_choice(test_doc)
890
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
891
                eval_logger.error("doc_to_choice must return list")
892
893
            else:
                num_choice = len(test_choice)
894

895
            if isinstance(test_text, int):
896
                self.multiple_input = num_choice
897
898
        else:
            test_choice = None
899

900
        if isinstance(test_target, list):
901
            self.multiple_target = len(test_target)
902
        else:
903
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
904
                test_target = test_choice[test_target]
905
            else:
lintangsutawika's avatar
lintangsutawika committed
906
                test_target = str(test_target)
907

908
909
910
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
911
            check_choices = [test_target]
912
913
914
915
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
916
917
                    True
                    if self.config.target_delimiter.rstrip()
918
                    != self.config.target_delimiter
919
                    else False
920
                )
921

922
                if delimiter_has_whitespace and choice_has_whitespace:
923
924
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
925
926
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
927
                    eval_logger.debug(
928
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
929
930
                    )

931
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
932
933
934
935
936
937
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
938
    def has_training_docs(self) -> bool:
939
        if self.config.training_split is not None:
940
941
942
943
            return True
        else:
            return False

baberabb's avatar
baberabb committed
944
    def has_validation_docs(self) -> bool:
945
        if self.config.validation_split is not None:
946
947
948
949
            return True
        else:
            return False

baberabb's avatar
baberabb committed
950
    def has_test_docs(self) -> bool:
951
        if self.config.test_split is not None:
952
953
954
955
            return True
        else:
            return False

baberabb's avatar
baberabb committed
956
    def training_docs(self) -> datasets.Dataset:
957
        if self.has_training_docs():
958
959
960
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
961
                )
962
            return self.dataset[self.config.training_split]
963

baberabb's avatar
baberabb committed
964
    def validation_docs(self) -> datasets.Dataset:
965
        if self.has_validation_docs():
966
967
968
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
969
                )
970
            return self.dataset[self.config.validation_split]
971

baberabb's avatar
baberabb committed
972
    def test_docs(self) -> datasets.Dataset:
973
        if self.has_test_docs():
974
975
976
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
977

978
    def fewshot_docs(self):
979
        if self.config.fewshot_split is not None:
980
981
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
982
            return self.dataset[self.config.fewshot_split]
983
984
985
986
987
988
989
990
991
992
993
994
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
995
        else:
996
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
997
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
998
                    f"[Task: {self.config.task}] "
999
1000
1001
1002
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1003

KonradSzafer's avatar
KonradSzafer committed
1004
1005
1006
1007
1008
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1009
        assistant_prefill: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1025
1026
        if assistant_prefill:
            labeled_examples.append({"role": "assistant", "content": assistant_prefill})
KonradSzafer's avatar
KonradSzafer committed
1027

lintangsutawika's avatar
lintangsutawika committed
1028
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1029
1030
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1031
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1032
1033
1034
1035
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1036
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1037
1038
        assistant_prefill: Optional[str] = None,
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1039
1040
1041
1042
1043
1044
1045
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1046
1047
1048
1049
1050
1051
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1052
1053
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1054
1055
1056
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1057
1058
1059
1060
1061
1062
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1063
1064
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1065

KonradSzafer's avatar
KonradSzafer committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1075
        else:
KonradSzafer's avatar
KonradSzafer committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1090
1091
1092
1093
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1094
1095
1096
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1097
1098
1099
                labeled_examples += self.sampler.get_context(
                    doc, num_fewshot, assistant_prefill=assistant_prefill
                )
lintangsutawika's avatar
lintangsutawika committed
1100
1101

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1102
1103
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1104
                # TODO: append prefill?
1105
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1106
1107
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1108
1109
1110
1111
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
                    assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1112
1113
1114
1115
1116
1117
1118
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
                            add_generation_prompt=False if assistant_prefill else True,
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1132
1133
1134
1135
1136
1137
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1138
1139
1140
1141
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1142
1143
1144
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1145
1146
1147
1148
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
                        assistant_prefill=assistant_prefill,
KonradSzafer's avatar
KonradSzafer committed
1149
1150
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1151
1152
1153
1154
            return chat_template(
                labeled_examples,
                add_generation_prompt=False if assistant_prefill else True,
            )
1155
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1156
1157
1158
1159
1160
            prefix = (
                self.config.target_delimiter + assistant_prefill
                if assistant_prefill is not None
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1161
1162
            if self.multiple_input:
                return labeled_examples
1163
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1164
                return labeled_examples + example + prefix
1165
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1166
                return [labeled_examples + ex + prefix for ex in example]
1167
1168
1169
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1170
                    return labeled_examples + choices[example] + prefix
1171
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1172
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1173

Baber Abbasi's avatar
Baber Abbasi committed
1174
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1175
        """Iterates over FilterEnsembles and applies them to instances"""
1176
1177
        if hasattr(self, "_filters"):
            for f in self._filters:
1178
                f.apply(self._instances)
1179
1180
1181
1182
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1183
    def should_decontaminate(self):
1184
        return self.config.should_decontaminate
1185

Baber Abbasi's avatar
Baber Abbasi committed
1186
    def doc_to_decontamination_query(self, doc: dict):
1187
        if self.config.should_decontaminate:
1188
1189
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1190
            else:
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1202

1203
    def _process_doc(self, doc: dict) -> dict:
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1214
    def doc_to_text(self, doc, doc_to_text=None):
1215
1216
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1217
1218
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1219
        else:
1220
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1221

1222
        if isinstance(doc_to_text, int):
1223
            return doc_to_text
1224
        elif isinstance(doc_to_text, str):
1225
            if doc_to_text in self.features:
1226
                # if self.config.doc_to_choice is not None:
1227
1228
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1229
1230
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1231
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1232
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1233
1234
1235
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1236
        elif callable(doc_to_text):
1237
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1238
        # Used when applying a Promptsource template
1239
        elif hasattr(doc_to_text, "apply"):
1240
1241
1242
1243
1244
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1245
                return self.config.fewshot_delimiter
1246
        else:
1247
            print(type(doc_to_text))
1248
            raise TypeError
1249

Yu Shi Jie's avatar
Yu Shi Jie committed
1250
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1251
1252
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1253
1254
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1255
        else:
1256
            doc_to_target = self.config.doc_to_target
1257

1258
        if isinstance(doc_to_target, int):
1259
            return doc_to_target
1260
        elif isinstance(doc_to_target, str):
1261
            if doc_to_target in self.features:
1262
                # if self.config.doc_to_choice is not None:
1263
1264
1265
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1266
            else:
lintangsutawika's avatar
lintangsutawika committed
1267
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1268
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1269
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1270
1271
1272
1273
1274
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1275
1276
1277
1278
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1279
1280
                else:
                    return target_string
1281
        elif isinstance(doc_to_target, list):
1282
            return doc_to_target
1283
        elif callable(doc_to_target):
1284
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1285
        # Used when applying a Promptsource template
1286
        elif hasattr(doc_to_target, "apply"):
1287
            applied_prompt = doc_to_target.apply(doc)
1288
1289
1290
1291
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1292
                return self.config.fewshot_delimiter
1293
1294
        else:
            raise TypeError
1295

Yu Shi Jie's avatar
Yu Shi Jie committed
1296
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1297
1298
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1299
1300
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1301
        elif self.config.doc_to_choice is None:
1302
1303
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1304
            doc_to_choice = self.config.doc_to_choice
1305

1306
        if isinstance(doc_to_choice, str):
1307
1308
1309
1310
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1311
        elif isinstance(doc_to_choice, list):
1312
            return doc_to_choice
1313
        elif isinstance(doc_to_choice, dict):
1314
1315
1316
1317
1318
1319
1320
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1321

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1345
1346
1347
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1348
1349
        apply_chat_template = kwargs.pop("apply_chat_template", False)

1350
1351
        aux_arguments = None

1352
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1353
            arguments = (ctx, self.doc_to_target(doc))
1354
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1355
            arguments = (self.doc_to_target(doc),)
1356
        elif self.OUTPUT_TYPE == "multiple_choice":
1357
            choices = self.doc_to_choice(doc)
1358
            target_delimiter = self.config.target_delimiter
1359
1360
            if apply_chat_template:
                target_delimiter = ""
1361
1362
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1363
                cont = self.doc_to_target(doc)
1364
1365
1366
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1367
            else:
1368
                # Otherwise they are placed in the continuation
1369
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1402
            request_list = [
1403
1404
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1405
                    doc=doc,
1406
                    arguments=arg,
1407
                    idx=i,
1408
1409
                    **kwargs,
                )
1410
                for i, arg in enumerate(arguments)
1411
            ]
1412
1413

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1414

lintangsutawika's avatar
lintangsutawika committed
1415
        return Instance(
1416
1417
1418
1419
1420
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1421
        )
1422
1423

    def process_results(self, doc, results):
1424
1425
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1426

1427
        result_dict = {}
1428
        use_metric = list(self._metric_fn_list.keys())
1429
1430
1431
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1432
1433
1434
1435
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1436
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1437
            (loglikelihood,) = results
1438
1439
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1440
            return {
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1456
            }
1457
        elif self.OUTPUT_TYPE == "multiple_choice":
1458
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1459

1460
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1461
            choices = self.doc_to_choice(doc)
1462
1463
            completion_len = np.array([float(len(i)) for i in choices])

1464
1465
            if (
                2 * len(choices) == len(lls)
1466
                and "acc_mutual_info" in self._metric_fn_list.keys()
1467
1468
1469
1470
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1471
1472
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1473
1474
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1475

1476
1477
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1478

1479
1480
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1481
            else:
1482
                gold = self.doc_to_target(doc)
1483
1484

            gold_index_error = False
1485
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1486
1487
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1488
1489
                    gold_index_error = True
            else:
1490
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1491
                    gold = gold if gold < len(choices) else -100
1492
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1493
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1494

Lintang Sutawika's avatar
Lintang Sutawika committed
1495
                if gold == -100:
1496
1497
1498
1499
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1500
                    f"Label index was not in within range of available choices,"
1501
1502
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1503

1504
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1505
1506
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1507
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1508
1509
1510
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1511
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1512
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1513

Lintang Sutawika's avatar
Lintang Sutawika committed
1514
1515
1516
1517
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1518
            result_dict = {
1519
                **({"acc": acc} if "acc" in use_metric else {}),
1520
1521
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1522
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1523
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1524
1525
1526
1527
1528
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1529
1530
            }

1531
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1532
1533
1534
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1535
1536
1537
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1538
        elif self.OUTPUT_TYPE == "generate_until":
1539
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1540
            result = results[0]
1541
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1542
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1543
                # it assumes that doc_to_target returns a number.
1544
1545
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1546
1547
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1548
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1549
1550
1551
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1552
            ):
Chris's avatar
Chris committed
1553
1554
                # cast gold to the same type as result
                gold = type(result)(gold)
1555

lintangsutawika's avatar
lintangsutawika committed
1556
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1557
1558
1559
1560
1561
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1562
1563
1564
1565
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1566
1567
1568
1569
1570
1571
1572
1573
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1574
                    else:
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1596
                else:
1597
                    try:
1598
                        result_score = self._metric_fn_list[metric](
1599
1600
                            references=[gold],
                            predictions=[result],
1601
                            **self._metric_fn_kwargs[metric],
1602
                        )
1603
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1604
                        result_score = self._metric_fn_list[metric]([gold, result])
1605
1606
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
Hojin Lee's avatar
Hojin Lee committed
1607
1608
1609
1610
                        # This allows for multiple metrics to be returned from the same function
                        for k, v in result_score.items():
                            result_dict[k] = v
                        return result_dict
1611
                result_dict[metric] = result_score
1612
        else:
lintangsutawika's avatar
lintangsutawika committed
1613
1614
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1615
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1616
            )
1617
1618
1619

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1620
    def aggregation(self) -> dict:
1621
1622
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1623
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1624
        return self._higher_is_better
1625

Baber Abbasi's avatar
Baber Abbasi committed
1626
1627
1628
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1629
1630
1631
1632
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1633
1634
1635
1636
1637
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1638
            f"num_samples={len(self.eval_docs)})"
1639
1640
        )

1641
1642

class MultipleChoiceTask(Task):
1643
    OUTPUT_TYPE = "loglikelihood"
1644

baberabb's avatar
baberabb committed
1645
    def doc_to_target(self, doc: dict) -> str:
1646
1647
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1648
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1649
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1650
1651
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1652
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1653
                doc=doc,
1654
                arguments=(ctx, " {}".format(choice)),
1655
                idx=i,
1656
1657
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1658
1659
            for i, choice in enumerate(doc["choices"])
        ]
1660

1661
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1662
1663
1664
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1676
    def higher_is_better(self) -> dict:
1677
1678
1679
1680
1681
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1682
    def aggregation(self) -> dict:
1683
1684
1685
1686
1687
1688
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1689
class PerplexityTask(Task):
1690
1691
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1692
    def has_training_docs(self) -> bool:
1693
1694
        return False

baberabb's avatar
baberabb committed
1695
    def fewshot_examples(self, k: int, rnd) -> List:
1696
1697
1698
1699
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1700
1701
        return []

baberabb's avatar
baberabb committed
1702
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1703
1704
1705
1706
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1707
1708
1709

        return ""

baberabb's avatar
baberabb committed
1710
    def higher_is_better(self) -> dict:
1711
1712
1713
1714
1715
1716
1717
1718
1719
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1720
    def doc_to_text(self, doc) -> str:
1721
1722
1723
1724
1725
        return ""

    def doc_to_target(self, doc):
        return doc

1726
1727
1728
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1729

lintangsutawika's avatar
lintangsutawika committed
1730
1731
1732
1733
1734
1735
1736
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1737

1738
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1739
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1740
1741
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1742
1743
1744
1745
1746
1747
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1748
    def aggregation(self) -> dict:
1749
1750
1751
1752
1753
1754
1755
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1756
    def count_bytes(cls, doc) -> int:
1757
1758
1759
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1760
    def count_words(cls, doc) -> int:
1761
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1762
        return len(re.split(r"\s+", doc))