task.py 63.3 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
70
71
72
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
95
96
97
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
117
118
119
120
121
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self, keep_callable: bool = False) -> dict:
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
146
147
148
149
150
151
152
153
154
155
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

174
175
176
177
178
179
180
181
182
183
184

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

185
    VERSION: Optional[Union[int, str]] = None
186

187
188
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
189
    DATASET_PATH: Optional[str] = None
190
191

    # The name of a subset within `DATASET_PATH`.
192
    DATASET_NAME: Optional[str] = None
193

194
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
195

196
197
    def __init__(
        self,
198
199
200
201
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
202
    ) -> None:
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
225
226
227
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
228

229
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
230

lintangsutawika's avatar
lintangsutawika committed
231
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
232
233
234
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
235

236
237
238
239
240
241
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
266
267
268
269
270
271
272
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
273

274
    @property
275
    def config(self) -> TaskConfig:
276
277
278
        """Returns the TaskConfig associated with this class."""
        return self._config

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

294
    def training_docs(self) -> Iterable:
295
296
297
298
299
300
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

301
    def validation_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def test_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def fewshot_docs(self) -> Iterable:
316
317
318
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
325
            eval_logger.warning(
326
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
327
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
328
            )
329
330
            return self.test_docs()

331
    def _process_doc(self, doc: dict) -> dict:
332
333
334
335
336
337
338
339
340
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
341

342
    @property
343
    def instances(self) -> List[Instance]:
344
345
346
347
348
349
350
351
352
353
354
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

355
356
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
357
358
359
360
361
362
363
364
365
366
367
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

368
369
    def build_all_requests(
        self,
370
        *,
371
372
373
374
375
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
376
377
378
379
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
380
    ) -> None:
381
        """Build a set of Instances for a task, and store them in task.instances"""
382
383
384
385

        # used with caching
        og_limit = limit

386
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
387
388
389
390
391
392
393
394
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
410
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
411

412
        instances = []
413
414
415
416
417
418
419
420
421
422

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
423
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
424
425
426
427
428
429
430
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
431
        ):
432
            # sample fewshot context #TODO: need to offset doc_id by rank now!
433
            fewshot_ctx = self.fewshot_context(
434
                doc,
435
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
436
437
438
439
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
440
            )
441

442
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
443
444
445
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
446
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
447
            )
448
449
450
451

            if not isinstance(inst, list):
                inst = [inst]

452
453
454
455
456
457
458
459
460
461
462
463
464
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
465

466
467
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
468

469
470
471
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
488
            The number of times each instance in a dataset is inferred on. Defaults to 1,
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

524
525
526
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
527
528
529
530
531
532
533
534
535
536
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

537
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
538
    def fewshot_context(
539
540
541
        self,
        doc,
        num_fewshot,
542
        rnd=None,
543
        description=None,
lintangsutawika's avatar
lintangsutawika committed
544
    ):
545
546
547
548
549
550
551
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
552
553
554
555
556
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
557
558
559
        :returns: str
            The fewshot context.
        """
560
        if rnd is None:
561
562
563
564
565
566
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
567

568
        description = description if description else ""
569
570

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
571
            labeled_examples = ""
572
        else:
lintangsutawika's avatar
lintangsutawika committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
597
            )
598
599

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
600
        return description + labeled_examples + example
601

602
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
603
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
604
605
        if hasattr(self, "_filters"):
            for f in self._filters:
606
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
607
608
609
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
610

baberabb's avatar
baberabb committed
611
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
612
        """Returns the config as a dictionary."""
613
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
614
        # (num_fewshot)
615
        return self.config.to_dict()
616

Baber Abbasi's avatar
Baber Abbasi committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

657
658
659
660
661
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

662
663
664
665
666
667
668
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
669
670
671
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
672
673
674
675
676
677
678
679
680
681
682
683
684

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

685
686

class ConfigurableTask(Task):
687
    VERSION = "Yaml"
688
    OUTPUT_TYPE = None
689
    CONFIG = None
690
691

    def __init__(
692
693
694
695
696
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
697
    ) -> None:  # TODO no super() call here
698
        # Get pre-configured attributes
699
        self._config = self.CONFIG
700

701
        # Use new configurations if there was no preconfiguration
702
        if self.config is None:
703
            self._config = TaskConfig(**config)
704
705
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
706
            if config is not None:
707
                self._config.__dict__.update(config)
708

709
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
710
711
712
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
713

714
715
716
717
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

718
        if self.config.output_type is not None:
719
720
721
722
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
723
            self.OUTPUT_TYPE = self.config.output_type
724

725
726
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
727

728
729
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
730

731
732
733
734
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
735

736
        if self.config.metric_list is None:
737
            # TODO: handle this in TaskConfig.__post_init__ ?
738
739
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

740
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
741
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
742
                self._metric_fn_kwargs[metric_name] = {}
743
744
745
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
746
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
747
        else:
748
            for metric_config in self.config.metric_list:
749
750
751
752
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
753
754
755
756
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
757
758
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
759
                }
Chris's avatar
Chris committed
760
761
762
763
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
764

765
                if self.config.process_results is not None:
766
767
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
768
769
770
771
772
773
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
774
775
776
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
777
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
778

779
                if "aggregation" in metric_config:
780
                    agg_name = metric_config["aggregation"]
781
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
782
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
783
                    elif callable(agg_name):  # noqa: E721
784
785
786
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
787
                else:
788
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
789
                    metric_agg = get_metric_aggregation(metric_name)
790
                    eval_logger.warning(
791
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
792
793
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
794
                    )
795
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
796

797
798
799
800
801
802
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
803
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
804
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
805
                        f"higher_is_better={is_higher_better(metric_name)}"
806
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
807
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
808

809
        self.download(self.config.dataset_kwargs)
810
811
812
        self._training_docs = None
        self._fewshot_docs = None

813
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
814
            self._filters = []
815
            for filter_config in self.config.filter_list:
816
817
818
819
820
821
822
823
824
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
825
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
826
        else:
827
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
828

829
830
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
831
            self.prompt = get_prompt(
832
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
833
            )
834
835
836
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
837
        if self.fewshot_docs() is not None:
838
839
840
841
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
842
843
844
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
861

862
        self.task_docs = self.eval_docs
863

864
        # Test One Doc
865
        self.features = list(self.task_docs.features.keys())
866
867
        self.multiple_input = 0
        self.multiple_target = 0
868
        test_doc = self.task_docs[0]
869
        test_text = self.doc_to_text(test_doc)
870
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
871

872
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
873
            test_choice = self.doc_to_choice(test_doc)
874
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
875
                eval_logger.error("doc_to_choice must return list")
876
877
            else:
                num_choice = len(test_choice)
878

879
            if isinstance(test_text, int):
880
                self.multiple_input = num_choice
881
882
        else:
            test_choice = None
883

884
        if isinstance(test_target, list):
885
            self.multiple_target = len(test_target)
886
        else:
887
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
888
                test_target = test_choice[test_target]
889
            else:
lintangsutawika's avatar
lintangsutawika committed
890
                test_target = str(test_target)
891

892
893
894
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
895
            check_choices = [test_target]
896
897
898
899
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
900
901
                    True
                    if self.config.target_delimiter.rstrip()
902
                    != self.config.target_delimiter
903
                    else False
904
                )
905

906
                if delimiter_has_whitespace and choice_has_whitespace:
907
908
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
909
910
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
911
                    eval_logger.debug(
912
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
913
914
                    )

915
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
916
917
918
919
920
921
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
922
    def has_training_docs(self) -> bool:
923
        if self.config.training_split is not None:
924
925
926
927
            return True
        else:
            return False

baberabb's avatar
baberabb committed
928
    def has_validation_docs(self) -> bool:
929
        if self.config.validation_split is not None:
930
931
932
933
            return True
        else:
            return False

baberabb's avatar
baberabb committed
934
    def has_test_docs(self) -> bool:
935
        if self.config.test_split is not None:
936
937
938
939
            return True
        else:
            return False

baberabb's avatar
baberabb committed
940
    def training_docs(self) -> datasets.Dataset:
941
        if self.has_training_docs():
942
943
944
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
945
                )
946
            return self.dataset[self.config.training_split]
947

baberabb's avatar
baberabb committed
948
    def validation_docs(self) -> datasets.Dataset:
949
        if self.has_validation_docs():
950
951
952
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
953
                )
954
            return self.dataset[self.config.validation_split]
955

baberabb's avatar
baberabb committed
956
    def test_docs(self) -> datasets.Dataset:
957
        if self.has_test_docs():
958
959
960
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
961

962
    def fewshot_docs(self):
963
        if self.config.fewshot_split is not None:
964
965
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
966
            return self.dataset[self.config.fewshot_split]
967
968
969
970
971
972
973
974
975
976
977
978
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
979
        else:
980
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
981
                eval_logger.warning(
982
                    f"Task '{self.config.task}': "
983
984
985
986
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
987

KonradSzafer's avatar
KonradSzafer committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1009
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1019
1020
1021
1022
1023
1024
1025
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1026
1027
1028
1029
1030
1031
1032
1033
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1034
1035
1036
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1037
1038
1039
1040
1041
1042
1043

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1044
1045
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1046

KonradSzafer's avatar
KonradSzafer committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1056
        else:
KonradSzafer's avatar
KonradSzafer committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1076
1077

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1107
        else:
KonradSzafer's avatar
KonradSzafer committed
1108
1109
            if self.multiple_input:
                return labeled_examples
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1120

1121
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1122
        """Iterates over FilterEnsembles and applies them to instances"""
1123
1124
        if hasattr(self, "_filters"):
            for f in self._filters:
1125
                f.apply(self._instances)
1126
1127
1128
1129
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1130
    def should_decontaminate(self):
1131
        return self.config.should_decontaminate
1132
1133

    def doc_to_decontamination_query(self, doc):
1134
        if self.config.should_decontaminate:
1135
1136
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1137
            else:
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1149

1150
    def _process_doc(self, doc: dict) -> dict:
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1162
1163
        if self.prompt is not None:
            doc_to_text = self.prompt
1164
        else:
1165
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1166

1167
        if isinstance(doc_to_text, int):
1168
            return doc_to_text
1169
        elif isinstance(doc_to_text, str):
1170
            if doc_to_text in self.features:
1171
                # if self.config.doc_to_choice is not None:
1172
1173
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1174
1175
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1176
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1177
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1178
1179
1180
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1181
        elif callable(doc_to_text):
1182
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1183
        # Used when applying a Promptsource template
1184
        elif hasattr(doc_to_text, "apply"):
1185
1186
1187
1188
1189
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1190
                return self.config.fewshot_delimiter
1191
        else:
1192
            print(type(doc_to_text))
1193
            raise TypeError
1194

1195
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1196
1197
        if self.prompt is not None:
            doc_to_target = self.prompt
1198
        else:
1199
            doc_to_target = self.config.doc_to_target
1200

1201
        if isinstance(doc_to_target, int):
1202
            return doc_to_target
1203
        elif isinstance(doc_to_target, str):
1204
            if doc_to_target in self.features:
1205
                # if self.config.doc_to_choice is not None:
1206
1207
1208
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1209
            else:
lintangsutawika's avatar
lintangsutawika committed
1210
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1211
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1212
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1213
1214
1215
1216
1217
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1218
1219
1220
1221
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1222
1223
                else:
                    return target_string
1224
        elif isinstance(doc_to_target, list):
1225
            return doc_to_target
1226
        elif callable(doc_to_target):
1227
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1228
        # Used when applying a Promptsource template
1229
        elif hasattr(doc_to_target, "apply"):
1230
            applied_prompt = doc_to_target.apply(doc)
1231
1232
1233
1234
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1235
                return self.config.fewshot_delimiter
1236
1237
        else:
            raise TypeError
1238

baberabb's avatar
baberabb committed
1239
    def doc_to_choice(self, doc: Any) -> List[str]:
1240
1241
        if self.prompt is not None:
            doc_to_choice = self.prompt
1242
        elif self.config.doc_to_choice is None:
1243
1244
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1245
            doc_to_choice = self.config.doc_to_choice
1246

1247
        if isinstance(doc_to_choice, str):
1248
1249
1250
1251
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1252
        elif isinstance(doc_to_choice, list):
1253
            return doc_to_choice
1254
        elif isinstance(doc_to_choice, dict):
1255
1256
1257
1258
1259
1260
1261
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1262

baberabb's avatar
baberabb committed
1263
1264
1265
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1266
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1267
            arguments = (ctx, self.doc_to_target(doc))
1268
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1269
            arguments = (self.doc_to_target(doc),)
1270
        elif self.OUTPUT_TYPE == "multiple_choice":
1271
            choices = self.doc_to_choice(doc)
1272
            target_delimiter = self.config.target_delimiter
1273
1274
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1275
                cont = self.doc_to_target(doc)
1276
1277
1278
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1279
            else:
1280
                # Otherwise they are placed in the continuation
1281
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1282

1283
            request_list = [
1284
1285
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1286
                    doc=doc,
1287
                    arguments=arg,
1288
                    idx=i,
1289
1290
                    **kwargs,
                )
1291
                for i, arg in enumerate(arguments)
1292
            ]
1293
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1294
            if "acc_mutual_info" in self._metric_fn_list.keys():
1295
1296
1297
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1298
                # here mutual info refers to calculating
1299
1300
1301
1302
1303
1304
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1305
                            doc=doc,
1306
                            arguments=("", "{}".format(choice)),
1307
1308
1309
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1310
                        for i, choice in enumerate(choices)
1311
1312
1313
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1314

1315
        elif self.OUTPUT_TYPE == "generate_until":
1316
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1317
1318

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1319
1320
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1321
1322

    def process_results(self, doc, results):
1323
1324
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1325

1326
        result_dict = {}
1327
        use_metric = list(self._metric_fn_list.keys())
1328
1329
1330
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1331
1332
1333
1334
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1335
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1336
            (loglikelihood,) = results
1337
1338
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1339
            return {
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1355
            }
1356
        elif self.OUTPUT_TYPE == "multiple_choice":
1357
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1358

1359
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1360
            choices = self.doc_to_choice(doc)
1361
1362
            completion_len = np.array([float(len(i)) for i in choices])

1363
1364
            if (
                2 * len(choices) == len(lls)
1365
                and "acc_mutual_info" in self._metric_fn_list.keys()
1366
1367
1368
1369
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1370
1371
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1372
1373
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1374

1375
1376
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1377

1378
1379
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1380
            else:
1381
                gold = self.doc_to_target(doc)
1382
1383

            gold_index_error = False
1384
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1385
1386
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1387
1388
                    gold_index_error = True
            else:
1389
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1390
                    gold = gold if gold < len(choices) else -100
1391
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1392
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1393

Lintang Sutawika's avatar
Lintang Sutawika committed
1394
                if gold == -100:
1395
1396
1397
1398
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1399
                    f"Label index was not in within range of available choices,"
1400
1401
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1402

1403
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1404
1405
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1406
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1407
1408
1409
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1410
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1411
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1412

Lintang Sutawika's avatar
Lintang Sutawika committed
1413
1414
1415
1416
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1417
            result_dict = {
1418
                **({"acc": acc} if "acc" in use_metric else {}),
1419
1420
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1421
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1422
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1423
1424
1425
1426
1427
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1428
1429
            }

1430
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1431
1432
1433
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1434
1435
1436
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1437
        elif self.OUTPUT_TYPE == "generate_until":
1438
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1439
            result = results[0]
1440
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1441
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1442
                # it assumes that doc_to_target returns a number.
1443
1444
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1445
1446
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1447
                gold = list(gold)
Chris's avatar
Chris committed
1448
1449
1450
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1451

lintangsutawika's avatar
lintangsutawika committed
1452
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1453
1454
1455
1456
1457
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1458
1459
1460
1461
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1462
1463
1464
1465
1466
1467
1468
1469
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1470
                    else:
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1492
                else:
1493
                    try:
1494
                        result_score = self._metric_fn_list[metric](
1495
1496
                            references=[gold],
                            predictions=[result],
1497
                            **self._metric_fn_kwargs[metric],
1498
                        )
1499
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1500
                        result_score = self._metric_fn_list[metric]([gold, result])
1501
1502
1503
1504
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1505
        else:
lintangsutawika's avatar
lintangsutawika committed
1506
1507
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1508
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1509
            )
1510
1511
1512

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1513
    def aggregation(self) -> dict:
1514
1515
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1516
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1517
        return self._higher_is_better
1518

Baber Abbasi's avatar
Baber Abbasi committed
1519
1520
1521
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1522
1523
1524
1525
1526
1527
1528
1529
1530
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1531
1532

class MultipleChoiceTask(Task):
1533
    OUTPUT_TYPE = "loglikelihood"
1534

baberabb's avatar
baberabb committed
1535
    def doc_to_target(self, doc: dict) -> str:
1536
1537
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1538
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1539
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1540
1541
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1542
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1543
                doc=doc,
1544
                arguments=(ctx, " {}".format(choice)),
1545
                idx=i,
1546
1547
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1548
1549
            for i, choice in enumerate(doc["choices"])
        ]
1550

1551
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1552
1553
1554
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1566
    def higher_is_better(self) -> dict:
1567
1568
1569
1570
1571
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1572
    def aggregation(self) -> dict:
1573
1574
1575
1576
1577
1578
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1579
class PerplexityTask(Task):
1580
1581
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1582
    def has_training_docs(self) -> bool:
1583
1584
        return False

baberabb's avatar
baberabb committed
1585
    def fewshot_examples(self, k: int, rnd) -> List:
1586
1587
1588
1589
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1590
1591
        return []

baberabb's avatar
baberabb committed
1592
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1593
1594
1595
1596
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1597
1598
1599

        return ""

baberabb's avatar
baberabb committed
1600
    def higher_is_better(self) -> dict:
1601
1602
1603
1604
1605
1606
1607
1608
1609
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1610
    def doc_to_text(self, doc) -> str:
1611
1612
1613
1614
1615
        return ""

    def doc_to_target(self, doc):
        return doc

1616
1617
1618
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1619

lintangsutawika's avatar
lintangsutawika committed
1620
1621
1622
1623
1624
1625
1626
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1627

1628
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1629
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1630
1631
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1632
1633
1634
1635
1636
1637
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1638
    def aggregation(self) -> dict:
1639
1640
1641
1642
1643
1644
1645
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1646
    def count_bytes(cls, doc) -> int:
1647
1648
1649
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1650
    def count_words(cls, doc) -> int:
1651
1652
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))