task.py 65.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
78
    unsafe_code: bool = False
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
96
97
98
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111
112
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
118
119
120
121
122
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                    "do_sample": False,
                }
125

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self, keep_callable: bool = False) -> dict:
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
147
148
149
150
151
152
153
154
155
156
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
157
        return cfg_dict
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

175
176
177
178
179
180
181
182
183
184
185

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

186
    VERSION: Optional[Union[int, str]] = None
187

188
189
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
190
    DATASET_PATH: Optional[str] = None
191
192

    # The name of a subset within `DATASET_PATH`.
193
    DATASET_NAME: Optional[str] = None
194

195
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
196

197
198
    def __init__(
        self,
199
200
201
202
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
203
    ) -> None:
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
226
227
228
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
229

230
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
231

lintangsutawika's avatar
lintangsutawika committed
232
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
233
234
235
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
236

237
238
239
240
241
242
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
267
268
269
270
271
272
273
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
274

275
    @property
276
    def config(self) -> TaskConfig:
277
278
279
        """Returns the TaskConfig associated with this class."""
        return self._config

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

295
    def training_docs(self) -> Iterable:
296
297
298
299
300
301
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

302
    def validation_docs(self) -> Iterable:
303
304
305
306
307
308
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

309
    def test_docs(self) -> Iterable:
310
311
312
313
314
315
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

316
    def fewshot_docs(self) -> Iterable:
317
318
319
320
321
322
323
324
325
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
326
            eval_logger.warning(
327
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
328
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
329
            )
330
331
            return self.test_docs()

332
    def _process_doc(self, doc: dict) -> dict:
333
334
335
336
337
338
339
340
341
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
342

343
    @property
344
    def instances(self) -> List[Instance]:
345
346
347
348
349
350
351
352
353
354
355
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

356
357
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
358
359
360
361
362
363
364
365
366
367
368
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

369
370
371
372
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

373
374
    def build_all_requests(
        self,
375
        *,
376
377
378
379
380
381
382
383
384
385
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
386
    ) -> None:
387
        """Build a set of Instances for a task, and store them in task.instances"""
388
389
390
391

        # used with caching
        og_limit = limit

392
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
393
394
395
396
397
398
399
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
400
        cache_key += f"-tokenizer{tokenizer_name}"
401

Baber Abbasi's avatar
Baber Abbasi committed
402
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
403
404
405
406
407
408
409
410
411
412
413
414
415

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
416
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
417

418
        instances = []
419
420
421
422
423
424
425
426
427
428

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
429
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
430
431
432
433
434
435
436
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
437
        ):
438
            # sample fewshot context #TODO: need to offset doc_id by rank now!
439
            fewshot_ctx = self.fewshot_context(
440
                doc,
441
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
442
443
444
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
445
                chat_template,
446
            )
447

448
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
449
450
451
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
452
                metadata=(self.config["task"], doc_id, self.config.repeats),
453
                apply_chat_template=apply_chat_template,
lintangsutawika's avatar
lintangsutawika committed
454
            )
455
456
457
458

            if not isinstance(inst, list):
                inst = [inst]

459
460
461
462
463
464
465
466
467
468
469
470
471
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
472

473
474
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
475

476
477
478
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
495
            The number of times each instance in a dataset is inferred on. Defaults to 1,
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

531
532
533
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
534
535
536
537
538
539
540
541
542
543
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

544
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
545
    def fewshot_context(
546
547
548
        self,
        doc,
        num_fewshot,
549
        rnd=None,
550
        description=None,
lintangsutawika's avatar
lintangsutawika committed
551
    ):
552
553
554
555
556
557
558
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
559
560
561
562
563
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
564
565
566
        :returns: str
            The fewshot context.
        """
567
        if rnd is None:
568
569
570
571
572
573
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
574

575
        description = description if description else ""
576
577

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
578
            labeled_examples = ""
579
        else:
lintangsutawika's avatar
lintangsutawika committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
604
            )
605
606

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
607
        return description + labeled_examples + example
608

609
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
610
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
611
612
        if hasattr(self, "_filters"):
            for f in self._filters:
613
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
614
615
616
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
617

baberabb's avatar
baberabb committed
618
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
619
        """Returns the config as a dictionary."""
620
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
621
        # (num_fewshot)
622
        return self.config.to_dict()
623

Baber Abbasi's avatar
Baber Abbasi committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

664
665
666
667
668
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

669
670
671
672
673
674
675
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
676
677
678
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
679
680
681
682
683
684
685
686
687
688
689
690
691

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

692
693

class ConfigurableTask(Task):
694
    VERSION = "Yaml"
695
    OUTPUT_TYPE = None
696
    CONFIG = None
697
698

    def __init__(
699
700
701
702
703
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
704
    ) -> None:  # TODO no super() call here
705
        # Get pre-configured attributes
706
        self._config = self.CONFIG
707

708
        # Use new configurations if there was no preconfiguration
709
        if self.config is None:
710
            self._config = TaskConfig(**config)
711
712
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
713
            if config is not None:
714
                self._config.__dict__.update(config)
715

716
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
717
718
719
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
720

721
722
723
724
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

725
        if self.config.output_type is not None:
726
727
728
729
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
730
            self.OUTPUT_TYPE = self.config.output_type
731

732
733
734
735
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
736
737
738
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

739
740
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
741

742
743
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
744

745
746
747
748
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
749

750
        if self.config.metric_list is None:
751
            # TODO: handle this in TaskConfig.__post_init__ ?
752
753
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

754
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
755
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
756
                self._metric_fn_kwargs[metric_name] = {}
757
758
759
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
760
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
761
        else:
762
            for metric_config in self.config.metric_list:
763
764
765
766
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
767
768
769
770
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
771
772
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
773
                }
Chris's avatar
Chris committed
774
775
776
777
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
778

779
                if self.config.process_results is not None:
780
781
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
782
783
784
785
786
787
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
788
789
790
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
791
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
792

793
                if "aggregation" in metric_config:
794
                    agg_name = metric_config["aggregation"]
795
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
796
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
797
                    elif callable(agg_name):  # noqa: E721
798
799
800
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
801
                else:
802
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
803
                    metric_agg = get_metric_aggregation(metric_name)
804
                    eval_logger.warning(
805
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
806
807
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
808
                    )
809
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
810

811
812
813
814
815
816
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
817
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
818
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
819
                        f"higher_is_better={is_higher_better(metric_name)}"
820
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
821
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
822

823
        self.download(self.config.dataset_kwargs)
824
825
826
        self._training_docs = None
        self._fewshot_docs = None

827
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
828
            self._filters = []
829
            for filter_config in self.config.filter_list:
830
831
832
833
834
835
836
837
838
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
839
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
840
        else:
841
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
842

843
844
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
845
            self.prompt = get_prompt(
846
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
847
            )
848
849
850
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
851
        if self.fewshot_docs() is not None:
852
853
854
855
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
856
857
858
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
875

876
        self.task_docs = self.eval_docs
877

878
        # Test One Doc
879
        self.features = list(self.task_docs.features.keys())
880
881
        self.multiple_input = 0
        self.multiple_target = 0
882
        test_doc = self.task_docs[0]
883
        test_text = self.doc_to_text(test_doc)
884
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
885

886
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
887
            test_choice = self.doc_to_choice(test_doc)
888
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
889
                eval_logger.error("doc_to_choice must return list")
890
891
            else:
                num_choice = len(test_choice)
892

893
            if isinstance(test_text, int):
894
                self.multiple_input = num_choice
895
896
        else:
            test_choice = None
897

898
        if isinstance(test_target, list):
899
            self.multiple_target = len(test_target)
900
        else:
901
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
902
                test_target = test_choice[test_target]
903
            else:
lintangsutawika's avatar
lintangsutawika committed
904
                test_target = str(test_target)
905

906
907
908
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
909
            check_choices = [test_target]
910
911
912
913
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
914
915
                    True
                    if self.config.target_delimiter.rstrip()
916
                    != self.config.target_delimiter
917
                    else False
918
                )
919

920
                if delimiter_has_whitespace and choice_has_whitespace:
921
922
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
923
924
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
925
                    eval_logger.debug(
926
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
927
928
                    )

929
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
930
931
932
933
934
935
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
936
    def has_training_docs(self) -> bool:
937
        if self.config.training_split is not None:
938
939
940
941
            return True
        else:
            return False

baberabb's avatar
baberabb committed
942
    def has_validation_docs(self) -> bool:
943
        if self.config.validation_split is not None:
944
945
946
947
            return True
        else:
            return False

baberabb's avatar
baberabb committed
948
    def has_test_docs(self) -> bool:
949
        if self.config.test_split is not None:
950
951
952
953
            return True
        else:
            return False

baberabb's avatar
baberabb committed
954
    def training_docs(self) -> datasets.Dataset:
955
        if self.has_training_docs():
956
957
958
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
959
                )
960
            return self.dataset[self.config.training_split]
961

baberabb's avatar
baberabb committed
962
    def validation_docs(self) -> datasets.Dataset:
963
        if self.has_validation_docs():
964
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
967
                )
968
            return self.dataset[self.config.validation_split]
969

baberabb's avatar
baberabb committed
970
    def test_docs(self) -> datasets.Dataset:
971
        if self.has_test_docs():
972
973
974
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
975

976
    def fewshot_docs(self):
977
        if self.config.fewshot_split is not None:
978
979
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
980
            return self.dataset[self.config.fewshot_split]
981
982
983
984
985
986
987
988
989
990
991
992
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
993
        else:
994
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
995
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
996
                    f"[Task: {self.config.task}] "
997
998
999
1000
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1001

KonradSzafer's avatar
KonradSzafer committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1023
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1024
1025
1026
1027
1028
1029
1030
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1031
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1032
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1033
1034
1035
1036
1037
1038
1039
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1040
1041
1042
1043
1044
1045
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1046
1047
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1048
1049
1050
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1051
1052
1053
1054
1055
1056
1057

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1058
1059
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1060

KonradSzafer's avatar
KonradSzafer committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1070
        else:
KonradSzafer's avatar
KonradSzafer committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1090
1091

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1092
1093
        if apply_chat_template:
            if self.multiple_input:
1094
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1106
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1120
            return chat_template(labeled_examples)
1121
        else:
KonradSzafer's avatar
KonradSzafer committed
1122
1123
            if self.multiple_input:
                return labeled_examples
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1134

1135
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1136
        """Iterates over FilterEnsembles and applies them to instances"""
1137
1138
        if hasattr(self, "_filters"):
            for f in self._filters:
1139
                f.apply(self._instances)
1140
1141
1142
1143
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1144
    def should_decontaminate(self):
1145
        return self.config.should_decontaminate
1146
1147

    def doc_to_decontamination_query(self, doc):
1148
        if self.config.should_decontaminate:
1149
1150
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1151
            else:
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1163

1164
    def _process_doc(self, doc: dict) -> dict:
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1175
    def doc_to_text(self, doc, doc_to_text=None):
1176
1177
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1178
1179
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1180
        else:
1181
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1182

1183
        if isinstance(doc_to_text, int):
1184
            return doc_to_text
1185
        elif isinstance(doc_to_text, str):
1186
            if doc_to_text in self.features:
1187
                # if self.config.doc_to_choice is not None:
1188
1189
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1190
1191
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1192
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1193
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1194
1195
1196
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1197
        elif callable(doc_to_text):
1198
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1199
        # Used when applying a Promptsource template
1200
        elif hasattr(doc_to_text, "apply"):
1201
1202
1203
1204
1205
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1206
                return self.config.fewshot_delimiter
1207
        else:
1208
            print(type(doc_to_text))
1209
            raise TypeError
1210

Yu Shi Jie's avatar
Yu Shi Jie committed
1211
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1212
1213
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1214
1215
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1216
        else:
1217
            doc_to_target = self.config.doc_to_target
1218

1219
        if isinstance(doc_to_target, int):
1220
            return doc_to_target
1221
        elif isinstance(doc_to_target, str):
1222
            if doc_to_target in self.features:
1223
                # if self.config.doc_to_choice is not None:
1224
1225
1226
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1227
            else:
lintangsutawika's avatar
lintangsutawika committed
1228
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1229
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1230
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1231
1232
1233
1234
1235
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1236
1237
1238
1239
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1240
1241
                else:
                    return target_string
1242
        elif isinstance(doc_to_target, list):
1243
            return doc_to_target
1244
        elif callable(doc_to_target):
1245
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1246
        # Used when applying a Promptsource template
1247
        elif hasattr(doc_to_target, "apply"):
1248
            applied_prompt = doc_to_target.apply(doc)
1249
1250
1251
1252
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1253
                return self.config.fewshot_delimiter
1254
1255
        else:
            raise TypeError
1256

Yu Shi Jie's avatar
Yu Shi Jie committed
1257
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1258
1259
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1260
1261
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1262
        elif self.config.doc_to_choice is None:
1263
1264
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1265
            doc_to_choice = self.config.doc_to_choice
1266

1267
        if isinstance(doc_to_choice, str):
1268
1269
1270
1271
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1272
        elif isinstance(doc_to_choice, list):
1273
            return doc_to_choice
1274
        elif isinstance(doc_to_choice, dict):
1275
1276
1277
1278
1279
1280
1281
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1282

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1306
1307
1308
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1309
1310
        apply_chat_template = kwargs.pop("apply_chat_template", False)

1311
1312
        aux_arguments = None

1313
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1314
            arguments = (ctx, self.doc_to_target(doc))
1315
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1316
            arguments = (self.doc_to_target(doc),)
1317
        elif self.OUTPUT_TYPE == "multiple_choice":
1318
            choices = self.doc_to_choice(doc)
1319
            target_delimiter = self.config.target_delimiter
1320
1321
            if apply_chat_template:
                target_delimiter = ""
1322
1323
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1324
                cont = self.doc_to_target(doc)
1325
1326
1327
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1328
            else:
1329
                # Otherwise they are placed in the continuation
1330
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1363
            request_list = [
1364
1365
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1366
                    doc=doc,
1367
                    arguments=arg,
1368
                    idx=i,
1369
1370
                    **kwargs,
                )
1371
                for i, arg in enumerate(arguments)
1372
            ]
1373
1374

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1375

lintangsutawika's avatar
lintangsutawika committed
1376
        return Instance(
1377
1378
1379
1380
1381
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1382
        )
1383
1384

    def process_results(self, doc, results):
1385
1386
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1387

1388
        result_dict = {}
1389
        use_metric = list(self._metric_fn_list.keys())
1390
1391
1392
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1393
1394
1395
1396
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1397
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1398
            (loglikelihood,) = results
1399
1400
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1401
            return {
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1417
            }
1418
        elif self.OUTPUT_TYPE == "multiple_choice":
1419
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1420

1421
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1422
            choices = self.doc_to_choice(doc)
1423
1424
            completion_len = np.array([float(len(i)) for i in choices])

1425
1426
            if (
                2 * len(choices) == len(lls)
1427
                and "acc_mutual_info" in self._metric_fn_list.keys()
1428
1429
1430
1431
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1432
1433
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1434
1435
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1436

1437
1438
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1439

1440
1441
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1442
            else:
1443
                gold = self.doc_to_target(doc)
1444
1445

            gold_index_error = False
1446
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1447
1448
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1449
1450
                    gold_index_error = True
            else:
1451
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1452
                    gold = gold if gold < len(choices) else -100
1453
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1454
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1455

Lintang Sutawika's avatar
Lintang Sutawika committed
1456
                if gold == -100:
1457
1458
1459
1460
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1461
                    f"Label index was not in within range of available choices,"
1462
1463
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1464

1465
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1466
1467
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1468
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1469
1470
1471
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1472
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1473
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1474

Lintang Sutawika's avatar
Lintang Sutawika committed
1475
1476
1477
1478
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1479
            result_dict = {
1480
                **({"acc": acc} if "acc" in use_metric else {}),
1481
1482
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1483
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1484
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1485
1486
1487
1488
1489
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1490
1491
            }

1492
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1493
1494
1495
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1496
1497
1498
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1499
        elif self.OUTPUT_TYPE == "generate_until":
1500
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1501
            result = results[0]
1502
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1503
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1504
                # it assumes that doc_to_target returns a number.
1505
1506
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1507
1508
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1509
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1510
1511
1512
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1513
            ):
Chris's avatar
Chris committed
1514
1515
                # cast gold to the same type as result
                gold = type(result)(gold)
1516

lintangsutawika's avatar
lintangsutawika committed
1517
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1518
1519
1520
1521
1522
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1523
1524
1525
1526
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1527
1528
1529
1530
1531
1532
1533
1534
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1535
                    else:
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1557
                else:
1558
                    try:
1559
                        result_score = self._metric_fn_list[metric](
1560
1561
                            references=[gold],
                            predictions=[result],
1562
                            **self._metric_fn_kwargs[metric],
1563
                        )
1564
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1565
                        result_score = self._metric_fn_list[metric]([gold, result])
1566
1567
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
Hojin Lee's avatar
Hojin Lee committed
1568
1569
1570
1571
                        # This allows for multiple metrics to be returned from the same function
                        for k, v in result_score.items():
                            result_dict[k] = v
                        return result_dict
1572
                result_dict[metric] = result_score
1573
        else:
lintangsutawika's avatar
lintangsutawika committed
1574
1575
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1576
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1577
            )
1578
1579
1580

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1581
    def aggregation(self) -> dict:
1582
1583
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1584
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1585
        return self._higher_is_better
1586

Baber Abbasi's avatar
Baber Abbasi committed
1587
1588
1589
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1590
1591
1592
1593
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1594
1595
1596
1597
1598
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1599
            f"num_samples={len(self.eval_docs)})"
1600
1601
        )

1602
1603

class MultipleChoiceTask(Task):
1604
    OUTPUT_TYPE = "loglikelihood"
1605

baberabb's avatar
baberabb committed
1606
    def doc_to_target(self, doc: dict) -> str:
1607
1608
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1609
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1610
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1611
1612
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1613
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1614
                doc=doc,
1615
                arguments=(ctx, " {}".format(choice)),
1616
                idx=i,
1617
1618
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1619
1620
            for i, choice in enumerate(doc["choices"])
        ]
1621

1622
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1623
1624
1625
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1637
    def higher_is_better(self) -> dict:
1638
1639
1640
1641
1642
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1643
    def aggregation(self) -> dict:
1644
1645
1646
1647
1648
1649
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1650
class PerplexityTask(Task):
1651
1652
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1653
    def has_training_docs(self) -> bool:
1654
1655
        return False

baberabb's avatar
baberabb committed
1656
    def fewshot_examples(self, k: int, rnd) -> List:
1657
1658
1659
1660
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1661
1662
        return []

baberabb's avatar
baberabb committed
1663
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1664
1665
1666
1667
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1668
1669
1670

        return ""

baberabb's avatar
baberabb committed
1671
    def higher_is_better(self) -> dict:
1672
1673
1674
1675
1676
1677
1678
1679
1680
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1681
    def doc_to_text(self, doc) -> str:
1682
1683
1684
1685
1686
        return ""

    def doc_to_target(self, doc):
        return doc

1687
1688
1689
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1690

lintangsutawika's avatar
lintangsutawika committed
1691
1692
1693
1694
1695
1696
1697
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1698

1699
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1700
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1701
1702
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1703
1704
1705
1706
1707
1708
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1709
    def aggregation(self) -> dict:
1710
1711
1712
1713
1714
1715
1716
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1717
    def count_bytes(cls, doc) -> int:
1718
1719
1720
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1721
    def count_words(cls, doc) -> int:
1722
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1723
        return len(re.split(r"\s+", doc))