task.py 65.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
70
71
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
78
79
80
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
    doc_to_decontamination_query: Optional[str] = None
95
96
97
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
117
118
119
120
121
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self, keep_callable: bool = False) -> dict:
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
146
147
148
149
150
151
152
153
154
155
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

174
175
176
177
178
179
180
181
182
183
184

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

185
    VERSION: Optional[Union[int, str]] = None
186

187
188
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
189
    DATASET_PATH: Optional[str] = None
190
191

    # The name of a subset within `DATASET_PATH`.
192
    DATASET_NAME: Optional[str] = None
193

194
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
195

196
197
    def __init__(
        self,
198
199
200
201
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
202
    ) -> None:
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
225
226
227
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
228

229
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
230

lintangsutawika's avatar
lintangsutawika committed
231
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
232
233
234
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
235

236
237
238
239
240
241
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
266
267
268
269
270
271
272
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
273

274
    @property
275
    def config(self) -> TaskConfig:
276
277
278
        """Returns the TaskConfig associated with this class."""
        return self._config

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

294
    def training_docs(self) -> Iterable:
295
296
297
298
299
300
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

301
    def validation_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def test_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def fewshot_docs(self) -> Iterable:
316
317
318
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
325
            eval_logger.warning(
326
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
327
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
328
            )
329
330
            return self.test_docs()

331
    def _process_doc(self, doc: dict) -> dict:
332
333
334
335
336
337
338
339
340
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
341

342
    @property
343
    def instances(self) -> List[Instance]:
344
345
346
347
348
349
350
351
352
353
354
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

355
356
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
357
358
359
360
361
362
363
364
365
366
367
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

368
369
370
371
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

372
373
    def build_all_requests(
        self,
374
        *,
375
376
377
378
379
380
381
382
383
384
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
385
    ) -> None:
386
        """Build a set of Instances for a task, and store them in task.instances"""
387
388
389
390

        # used with caching
        og_limit = limit

391
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
392
393
394
395
396
397
398
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
399
        cache_key += f"-tokenizer{tokenizer_name}"
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
415
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
416

417
        instances = []
418
419
420
421
422
423
424
425
426
427

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
428
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
429
430
431
432
433
434
435
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
436
        ):
437
            # sample fewshot context #TODO: need to offset doc_id by rank now!
438
            fewshot_ctx = self.fewshot_context(
439
                doc,
440
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
441
442
443
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
444
                chat_template,
445
            )
446

447
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
448
449
450
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
451
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
452
            )
453
454
455
456

            if not isinstance(inst, list):
                inst = [inst]

457
458
459
460
461
462
463
464
465
466
467
468
469
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
470

471
472
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
473

474
475
476
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
493
            The number of times each instance in a dataset is inferred on. Defaults to 1,
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

529
530
531
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
532
533
534
535
536
537
538
539
540
541
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

542
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
543
    def fewshot_context(
544
545
546
        self,
        doc,
        num_fewshot,
547
        rnd=None,
548
        description=None,
lintangsutawika's avatar
lintangsutawika committed
549
    ):
550
551
552
553
554
555
556
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
557
558
559
560
561
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
562
563
564
        :returns: str
            The fewshot context.
        """
565
        if rnd is None:
566
567
568
569
570
571
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
572

573
        description = description if description else ""
574
575

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
576
            labeled_examples = ""
577
        else:
lintangsutawika's avatar
lintangsutawika committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
602
            )
603
604

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
605
        return description + labeled_examples + example
606

607
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
608
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
609
610
        if hasattr(self, "_filters"):
            for f in self._filters:
611
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
612
613
614
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
615

baberabb's avatar
baberabb committed
616
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
617
        """Returns the config as a dictionary."""
618
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
619
        # (num_fewshot)
620
        return self.config.to_dict()
621

Baber Abbasi's avatar
Baber Abbasi committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

662
663
664
665
666
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

667
668
669
670
671
672
673
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
674
675
676
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
677
678
679
680
681
682
683
684
685
686
687
688
689

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

690
691

class ConfigurableTask(Task):
692
    VERSION = "Yaml"
693
    OUTPUT_TYPE = None
694
    CONFIG = None
695
696

    def __init__(
697
698
699
700
701
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
702
    ) -> None:  # TODO no super() call here
703
        # Get pre-configured attributes
704
        self._config = self.CONFIG
705

706
        # Use new configurations if there was no preconfiguration
707
        if self.config is None:
708
            self._config = TaskConfig(**config)
709
710
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
711
            if config is not None:
712
                self._config.__dict__.update(config)
713

714
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
715
716
717
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
718

719
720
721
722
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

723
        if self.config.output_type is not None:
724
725
726
727
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
728
            self.OUTPUT_TYPE = self.config.output_type
729

730
731
732
733
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

734
735
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
736

737
738
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
739

740
741
742
743
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
744

745
        if self.config.metric_list is None:
746
            # TODO: handle this in TaskConfig.__post_init__ ?
747
748
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

749
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
750
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
751
                self._metric_fn_kwargs[metric_name] = {}
752
753
754
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
755
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
756
        else:
757
            for metric_config in self.config.metric_list:
758
759
760
761
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
762
763
764
765
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
766
767
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
768
                }
Chris's avatar
Chris committed
769
770
771
772
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
773

774
                if self.config.process_results is not None:
775
776
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
777
778
779
780
781
782
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
783
784
785
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
786
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
787

788
                if "aggregation" in metric_config:
789
                    agg_name = metric_config["aggregation"]
790
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
791
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
792
                    elif callable(agg_name):  # noqa: E721
793
794
795
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
796
                else:
797
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
798
                    metric_agg = get_metric_aggregation(metric_name)
799
                    eval_logger.warning(
800
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
801
802
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
803
                    )
804
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
805

806
807
808
809
810
811
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
812
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
813
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
814
                        f"higher_is_better={is_higher_better(metric_name)}"
815
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
816
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
817

818
        self.download(self.config.dataset_kwargs)
819
820
821
        self._training_docs = None
        self._fewshot_docs = None

822
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
823
            self._filters = []
824
            for filter_config in self.config.filter_list:
825
826
827
828
829
830
831
832
833
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
834
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
835
        else:
836
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
837

838
839
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
840
            self.prompt = get_prompt(
841
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
842
            )
843
844
845
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
846
        if self.fewshot_docs() is not None:
847
848
849
850
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
851
852
853
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
870

871
        self.task_docs = self.eval_docs
872

873
        # Test One Doc
874
        self.features = list(self.task_docs.features.keys())
875
876
        self.multiple_input = 0
        self.multiple_target = 0
877
        test_doc = self.task_docs[0]
878
        test_text = self.doc_to_text(test_doc)
879
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
880

881
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
882
            test_choice = self.doc_to_choice(test_doc)
883
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
884
                eval_logger.error("doc_to_choice must return list")
885
886
            else:
                num_choice = len(test_choice)
887

888
            if isinstance(test_text, int):
889
                self.multiple_input = num_choice
890
891
        else:
            test_choice = None
892

893
        if isinstance(test_target, list):
894
            self.multiple_target = len(test_target)
895
        else:
896
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
897
                test_target = test_choice[test_target]
898
            else:
lintangsutawika's avatar
lintangsutawika committed
899
                test_target = str(test_target)
900

901
902
903
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
904
            check_choices = [test_target]
905
906
907
908
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
909
910
                    True
                    if self.config.target_delimiter.rstrip()
911
                    != self.config.target_delimiter
912
                    else False
913
                )
914

915
                if delimiter_has_whitespace and choice_has_whitespace:
916
917
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
918
919
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
920
                    eval_logger.debug(
921
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
922
923
                    )

924
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
925
926
927
928
929
930
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
931
    def has_training_docs(self) -> bool:
932
        if self.config.training_split is not None:
933
934
935
936
            return True
        else:
            return False

baberabb's avatar
baberabb committed
937
    def has_validation_docs(self) -> bool:
938
        if self.config.validation_split is not None:
939
940
941
942
            return True
        else:
            return False

baberabb's avatar
baberabb committed
943
    def has_test_docs(self) -> bool:
944
        if self.config.test_split is not None:
945
946
947
948
            return True
        else:
            return False

baberabb's avatar
baberabb committed
949
    def training_docs(self) -> datasets.Dataset:
950
        if self.has_training_docs():
951
952
953
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
954
                )
955
            return self.dataset[self.config.training_split]
956

baberabb's avatar
baberabb committed
957
    def validation_docs(self) -> datasets.Dataset:
958
        if self.has_validation_docs():
959
960
961
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
962
                )
963
            return self.dataset[self.config.validation_split]
964

baberabb's avatar
baberabb committed
965
    def test_docs(self) -> datasets.Dataset:
966
        if self.has_test_docs():
967
968
969
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
970

971
    def fewshot_docs(self):
972
        if self.config.fewshot_split is not None:
973
974
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
975
            return self.dataset[self.config.fewshot_split]
976
977
978
979
980
981
982
983
984
985
986
987
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
988
        else:
989
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
990
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
991
                    f"[Task: {self.config.task}] "
992
993
994
995
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
996

KonradSzafer's avatar
KonradSzafer committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1018
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1019
1020
1021
1022
1023
1024
1025
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1026
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1027
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1028
1029
1030
1031
1032
1033
1034
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1035
1036
1037
1038
1039
1040
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1041
1042
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1043
1044
1045
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1046
1047
1048
1049
1050
1051
1052

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1053
1054
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1055

KonradSzafer's avatar
KonradSzafer committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1065
        else:
KonradSzafer's avatar
KonradSzafer committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1085
1086

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1087
1088
        if apply_chat_template:
            if self.multiple_input:
1089
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1101
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1115
            return chat_template(labeled_examples)
1116
        else:
KonradSzafer's avatar
KonradSzafer committed
1117
1118
            if self.multiple_input:
                return labeled_examples
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1129

1130
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1131
        """Iterates over FilterEnsembles and applies them to instances"""
1132
1133
        if hasattr(self, "_filters"):
            for f in self._filters:
1134
                f.apply(self._instances)
1135
1136
1137
1138
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1139
    def should_decontaminate(self):
1140
        return self.config.should_decontaminate
1141
1142

    def doc_to_decontamination_query(self, doc):
1143
        if self.config.should_decontaminate:
1144
1145
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1146
            else:
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1158

1159
    def _process_doc(self, doc: dict) -> dict:
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1170
    def doc_to_text(self, doc, doc_to_text=None):
1171
1172
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1173
1174
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1175
        else:
1176
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1177

1178
        if isinstance(doc_to_text, int):
1179
            return doc_to_text
1180
        elif isinstance(doc_to_text, str):
1181
            if doc_to_text in self.features:
1182
                # if self.config.doc_to_choice is not None:
1183
1184
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1185
1186
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1187
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1188
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1189
1190
1191
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1192
        elif callable(doc_to_text):
1193
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1194
        # Used when applying a Promptsource template
1195
        elif hasattr(doc_to_text, "apply"):
1196
1197
1198
1199
1200
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1201
                return self.config.fewshot_delimiter
1202
        else:
1203
            print(type(doc_to_text))
1204
            raise TypeError
1205

Yu Shi Jie's avatar
Yu Shi Jie committed
1206
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1207
1208
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1209
1210
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1211
        else:
1212
            doc_to_target = self.config.doc_to_target
1213

1214
        if isinstance(doc_to_target, int):
1215
            return doc_to_target
1216
        elif isinstance(doc_to_target, str):
1217
            if doc_to_target in self.features:
1218
                # if self.config.doc_to_choice is not None:
1219
1220
1221
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1222
            else:
lintangsutawika's avatar
lintangsutawika committed
1223
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1224
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1225
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1226
1227
1228
1229
1230
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1231
1232
1233
1234
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1235
1236
                else:
                    return target_string
1237
        elif isinstance(doc_to_target, list):
1238
            return doc_to_target
1239
        elif callable(doc_to_target):
1240
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1241
        # Used when applying a Promptsource template
1242
        elif hasattr(doc_to_target, "apply"):
1243
            applied_prompt = doc_to_target.apply(doc)
1244
1245
1246
1247
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1248
                return self.config.fewshot_delimiter
1249
1250
        else:
            raise TypeError
1251

Yu Shi Jie's avatar
Yu Shi Jie committed
1252
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1253
1254
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1255
1256
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1257
        elif self.config.doc_to_choice is None:
1258
1259
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1260
            doc_to_choice = self.config.doc_to_choice
1261

1262
        if isinstance(doc_to_choice, str):
1263
1264
1265
1266
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1267
        elif isinstance(doc_to_choice, list):
1268
            return doc_to_choice
1269
        elif isinstance(doc_to_choice, dict):
1270
1271
1272
1273
1274
1275
1276
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1301
1302
1303
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1304
1305
        aux_arguments = None

1306
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1307
            arguments = (ctx, self.doc_to_target(doc))
1308
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1309
            arguments = (self.doc_to_target(doc),)
1310
        elif self.OUTPUT_TYPE == "multiple_choice":
1311
            choices = self.doc_to_choice(doc)
1312
            target_delimiter = self.config.target_delimiter
1313
1314
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1315
                cont = self.doc_to_target(doc)
1316
1317
1318
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1319
            else:
1320
                # Otherwise they are placed in the continuation
1321
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1354
            request_list = [
1355
1356
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1357
                    doc=doc,
1358
                    arguments=arg,
1359
                    idx=i,
1360
1361
                    **kwargs,
                )
1362
                for i, arg in enumerate(arguments)
1363
            ]
1364
1365

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1366

lintangsutawika's avatar
lintangsutawika committed
1367
        return Instance(
1368
1369
1370
1371
1372
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1373
        )
1374
1375

    def process_results(self, doc, results):
1376
1377
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1378

1379
        result_dict = {}
1380
        use_metric = list(self._metric_fn_list.keys())
1381
1382
1383
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1384
1385
1386
1387
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1388
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1389
            (loglikelihood,) = results
1390
1391
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1392
            return {
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1408
            }
1409
        elif self.OUTPUT_TYPE == "multiple_choice":
1410
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1411

1412
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1413
            choices = self.doc_to_choice(doc)
1414
1415
            completion_len = np.array([float(len(i)) for i in choices])

1416
1417
            if (
                2 * len(choices) == len(lls)
1418
                and "acc_mutual_info" in self._metric_fn_list.keys()
1419
1420
1421
1422
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1423
1424
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1425
1426
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1427

1428
1429
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1430

1431
1432
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1433
            else:
1434
                gold = self.doc_to_target(doc)
1435
1436

            gold_index_error = False
1437
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1438
1439
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1440
1441
                    gold_index_error = True
            else:
1442
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1443
                    gold = gold if gold < len(choices) else -100
1444
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1445
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1446

Lintang Sutawika's avatar
Lintang Sutawika committed
1447
                if gold == -100:
1448
1449
1450
1451
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1452
                    f"Label index was not in within range of available choices,"
1453
1454
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1455

1456
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1457
1458
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1459
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1460
1461
1462
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1463
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1464
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1465

Lintang Sutawika's avatar
Lintang Sutawika committed
1466
1467
1468
1469
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1470
            result_dict = {
1471
                **({"acc": acc} if "acc" in use_metric else {}),
1472
1473
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1474
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1475
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1476
1477
1478
1479
1480
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1481
1482
            }

1483
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1484
1485
1486
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1487
1488
1489
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1490
        elif self.OUTPUT_TYPE == "generate_until":
1491
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1492
            result = results[0]
1493
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1494
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1495
                # it assumes that doc_to_target returns a number.
1496
1497
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1498
1499
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1500
                gold = list(gold)
Baber Abbasi's avatar
Baber Abbasi committed
1501
            elif type(gold) is not type(result):
Chris's avatar
Chris committed
1502
1503
                # cast gold to the same type as result
                gold = type(result)(gold)
1504

lintangsutawika's avatar
lintangsutawika committed
1505
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1506
1507
1508
1509
1510
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1511
1512
1513
1514
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1515
1516
1517
1518
1519
1520
1521
1522
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1523
                    else:
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1545
                else:
1546
                    try:
1547
                        result_score = self._metric_fn_list[metric](
1548
1549
                            references=[gold],
                            predictions=[result],
1550
                            **self._metric_fn_kwargs[metric],
1551
                        )
1552
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1553
                        result_score = self._metric_fn_list[metric]([gold, result])
1554
1555
1556
1557
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1558
        else:
lintangsutawika's avatar
lintangsutawika committed
1559
1560
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1561
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1562
            )
1563
1564
1565

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1566
    def aggregation(self) -> dict:
1567
1568
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1569
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1570
        return self._higher_is_better
1571

Baber Abbasi's avatar
Baber Abbasi committed
1572
1573
1574
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1575
1576
1577
1578
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1579
1580
1581
1582
1583
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1584
            f"num_samples={len(self.eval_docs)})"
1585
1586
        )

1587
1588

class MultipleChoiceTask(Task):
1589
    OUTPUT_TYPE = "loglikelihood"
1590

baberabb's avatar
baberabb committed
1591
    def doc_to_target(self, doc: dict) -> str:
1592
1593
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1594
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1595
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1596
1597
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1598
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1599
                doc=doc,
1600
                arguments=(ctx, " {}".format(choice)),
1601
                idx=i,
1602
1603
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1604
1605
            for i, choice in enumerate(doc["choices"])
        ]
1606

1607
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1608
1609
1610
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1622
    def higher_is_better(self) -> dict:
1623
1624
1625
1626
1627
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1628
    def aggregation(self) -> dict:
1629
1630
1631
1632
1633
1634
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1635
class PerplexityTask(Task):
1636
1637
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1638
    def has_training_docs(self) -> bool:
1639
1640
        return False

baberabb's avatar
baberabb committed
1641
    def fewshot_examples(self, k: int, rnd) -> List:
1642
1643
1644
1645
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1646
1647
        return []

baberabb's avatar
baberabb committed
1648
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1649
1650
1651
1652
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1653
1654
1655

        return ""

baberabb's avatar
baberabb committed
1656
    def higher_is_better(self) -> dict:
1657
1658
1659
1660
1661
1662
1663
1664
1665
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1666
    def doc_to_text(self, doc) -> str:
1667
1668
1669
1670
1671
        return ""

    def doc_to_target(self, doc):
        return doc

1672
1673
1674
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1675

lintangsutawika's avatar
lintangsutawika committed
1676
1677
1678
1679
1680
1681
1682
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1683

1684
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1685
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1686
1687
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1688
1689
1690
1691
1692
1693
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1694
    def aggregation(self) -> dict:
1695
1696
1697
1698
1699
1700
1701
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1702
    def count_bytes(cls, doc) -> int:
1703
1704
1705
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1706
    def count_words(cls, doc) -> int:
1707
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1708
        return len(re.split(r"\s+", doc))