task.py 67.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
lintangsutawika's avatar
lintangsutawika committed
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
25
import shortuuid
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
57
@dataclass
class AggMetricConfig(dict):
    metric: Optional[str] = "acc"
lintangsutawika's avatar
lintangsutawika committed
58
    metric_alias: Optional[str] = None
59
60
    aggregation: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
61
    filter_list: Optional[Union[str, list]] = "none"
62
63
64
65

    def __post_init__(self):
        if isinstance(self.filter_list, str):
            self.filter_list = [self.filter_list]
lintangsutawika's avatar
lintangsutawika committed
66

lintangsutawika's avatar
lintangsutawika committed
67

lintangsutawika's avatar
lintangsutawika committed
68
69
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
70
71
72
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
73
    tag_to_task: Optional[str] = False
74
    aggregate_metric: Optional[
75
76
        Union[List[AggMetricConfig], AggMetricConfig, dict]
    ] = None
lintangsutawika's avatar
lintangsutawika committed
77
78
79
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
lintangsutawika's avatar
lintangsutawika committed
80
81
82
83
84
85
86

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

87
    def __post_init__(self):
lintangsutawika's avatar
lintangsutawika committed
88
89
90
        if self.aggregate_metric is not None:
            if isinstance(self.aggregate_metric, dict):
                self.aggregate_metric = [self.aggregate_metric]
91

lintangsutawika's avatar
lintangsutawika committed
92
            self.aggregate_metric = [
93
                AggMetricConfig(**item) if isinstance(item, dict) else item
lintangsutawika's avatar
lintangsutawika committed
94
                for item in self.aggregate_metric
95
96
            ]

lintangsutawika's avatar
lintangsutawika committed
97
98
99
100
101
102
103
104
105
106
107
108
109
    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
110
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
131
132
133
134
135
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
lintangsutawika's avatar
lintangsutawika committed
136
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
137
        self._config = GroupConfig(**config)
138
        self._task_id = self._config.group
lintangsutawika's avatar
lintangsutawika committed
139
140
141
142

    @property
    def group(self):
        return self._config.group
143

lintangsutawika's avatar
lintangsutawika committed
144
145
146
    @property
    def group_alias(self):
        return self._config.group_alias
147
148
149
150
151

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
152
153
154
155
    @property
    def config(self):
        return self._config.to_dict()

lintangsutawika's avatar
lintangsutawika committed
156
157
    @property
    def task_id(self) -> Any:
158
159
160
161
162
        return self._task_id

    @task_id.setter
    def task_id(self, value):
        self._task_id = value
lintangsutawika's avatar
lintangsutawika committed
163
164
165
166

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
167

lintangsutawika's avatar
lintangsutawika committed
168
169
    def __repr__(self):
        return (
170
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
171
172
        )

173

174
175
@dataclass
class TaskConfig(dict):
176
    # task naming/registry
177
178
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
179
    tag: Optional[Union[str, list]] = None
180
    group: Optional[Union[str, list]] = None
181
182
183
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
184
185
186
187
188
189
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
190
191
192
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
193
194
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
195
196
197
198
199
200
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
201
    description: str = ""
202
203
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
204
    fewshot_config: Optional[dict] = None
205
    # runtime configuration options
206
    num_fewshot: Optional[int] = None
207
    # scoring options
208
209
210
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
211
    repeats: int = 1
212
    filter_list: Optional[Union[str, list]] = None
213
    should_decontaminate: bool = False
214
    doc_to_decontamination_query: Optional[str] = None
215
216
217
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
218

Ethan Smith's avatar
Ethan Smith committed
219
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
220
        if self.generation_kwargs is not None:
221
            if self.output_type != "generate_until":
222
                eval_logger.warning(
223
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
224
225
226
227
228
229
230
231
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
232
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
233
        else:
234
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
235
236
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
237
238
239
240
241
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
242
243
                    "do_sample": False,
                }
244

245
246
247
    def __getitem__(self, item):
        return getattr(self, item)

248
249
250
    def __setitem__(self, item, value):
        return setattr(self, item, value)

251
    def to_dict(self, keep_callable: bool = False) -> dict:
252
253
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
254
        Used for dumping results alongside full task configuration
255

haileyschoelkopf's avatar
haileyschoelkopf committed
256
257
258
259
260
261
262
263
264
265
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
266
267
268
269
270
271
272
273
274
275
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
276
        return cfg_dict
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

294
295
296
297
298
299
300
301
302
303
304

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

305
    VERSION: Optional[Union[int, str]] = None
306

307
308
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
309
    DATASET_PATH: Optional[str] = None
310
311

    # The name of a subset within `DATASET_PATH`.
312
    DATASET_NAME: Optional[str] = None
313

314
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
315

316
317
    def __init__(
        self,
318
319
320
321
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
322
    ) -> None:
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
345
346
347
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
348

349
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
350
        self._task_id = shortuuid.uuid()[:8]
351
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
352

lintangsutawika's avatar
lintangsutawika committed
353
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
354
355
356
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
357

358
359
360
361
362
363
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
388
389
390
391
392
393
394
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
395

396
    @property
397
    def config(self) -> TaskConfig:
398
399
400
        """Returns the TaskConfig associated with this class."""
        return self._config

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

416
    def training_docs(self) -> Iterable:
417
418
419
420
421
422
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

423
    def validation_docs(self) -> Iterable:
424
425
426
427
428
429
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

430
    def test_docs(self) -> Iterable:
431
432
433
434
435
436
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

437
    def fewshot_docs(self) -> Iterable:
438
439
440
441
442
443
444
445
446
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
447
            eval_logger.warning(
448
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
449
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
450
            )
451
452
            return self.test_docs()

453
    def _process_doc(self, doc: dict) -> dict:
454
455
456
457
458
459
460
461
462
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
463

464
    @property
465
    def instances(self) -> List[Instance]:
466
467
468
469
470
471
472
473
474
475
476
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

477
478
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
479
480
481
482
483
484
485
486
487
488
489
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

490
491
    def build_all_requests(
        self,
492
        *,
493
494
495
496
497
498
499
500
501
502
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
503
    ) -> None:
504
        """Build a set of Instances for a task, and store them in task.instances"""
505
506
507
508

        # used with caching
        og_limit = limit

509
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
510
511
512
513
514
515
516
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
517
        cache_key += f"-tokenizer{tokenizer_name}"
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
533
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
534

535
        instances = []
536
537
538
539
540
541
542
543
544
545

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
546
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
547
548
549
550
551
552
553
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
554
        ):
555
            # sample fewshot context #TODO: need to offset doc_id by rank now!
556
            fewshot_ctx = self.fewshot_context(
557
                doc,
558
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
559
560
561
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
562
                chat_template,
563
            )
564

565
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
566
567
568
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
569
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
570
            )
571
572
573
574

            if not isinstance(inst, list):
                inst = [inst]

575
576
577
578
579
580
581
582
583
584
585
586
587
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
588

589
590
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
591

592
593
594
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
611
            The number of times each instance in a dataset is inferred on. Defaults to 1,
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

647
648
649
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
650
651
652
653
654
655
656
657
658
659
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

660
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
661
    def fewshot_context(
662
663
664
        self,
        doc,
        num_fewshot,
665
        rnd=None,
666
        description=None,
lintangsutawika's avatar
lintangsutawika committed
667
    ):
668
669
670
671
672
673
674
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
675
676
677
678
679
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
680
681
682
        :returns: str
            The fewshot context.
        """
683
        if rnd is None:
684
685
686
687
688
689
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
690

691
        description = description if description else ""
692
693

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
694
            labeled_examples = ""
695
        else:
lintangsutawika's avatar
lintangsutawika committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
720
            )
721
722

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
723
        return description + labeled_examples + example
724

725
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
726
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
727
728
        if hasattr(self, "_filters"):
            for f in self._filters:
729
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
730
731
732
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
733

baberabb's avatar
baberabb committed
734
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
735
        """Returns the config as a dictionary."""
736
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
737
        # (num_fewshot)
738
        return self.config.to_dict()
739

Baber Abbasi's avatar
Baber Abbasi committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

780
781
782
783
784
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

785
786
787
788
789
790
791
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
792
793
794
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
795
796
797
798
799
800
801
802
803
804
805
806
807

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

808
809
810
    @property
    def task_id(self) -> Any:
        return self._task_id
811

812
813
814
815
    @task_id.setter
    def task_id(self, value):
        self._task_id = value

816

817
class ConfigurableTask(Task):
818
    VERSION = "Yaml"
819
    OUTPUT_TYPE = None
820
    CONFIG = None
821
822

    def __init__(
823
824
825
826
827
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
828
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
829
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
830
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
831

832
        # Get pre-configured attributes
833
        self._config = self.CONFIG
834

835
        # Use new configurations if there was no preconfiguration
836
        if self.config is None:
837
            self._config = TaskConfig(**config)
838
839
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
840
            if config is not None:
841
                self._config.__dict__.update(config)
842

843
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
844
845
846
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
847

848
849
850
851
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

852
        if self.config.output_type is not None:
853
854
855
856
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
857
            self.OUTPUT_TYPE = self.config.output_type
858

859
860
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
861

862
863
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
864

865
866
867
868
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
869

870
        if self.config.metric_list is None:
871
            # TODO: handle this in TaskConfig.__post_init__ ?
872
873
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

874
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
875
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
876
                self._metric_fn_kwargs[metric_name] = {}
877
878
879
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
880
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
881
        else:
882
            for metric_config in self.config.metric_list:
883
884
885
886
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
887
888
889
890
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
891
892
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
893
                }
Chris's avatar
Chris committed
894
895
896
897
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
898

899
                if self.config.process_results is not None:
900
901
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
902
903
904
905
906
907
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
908
909
910
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
911
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
912

913
                if "aggregation" in metric_config:
914
                    agg_name = metric_config["aggregation"]
915
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
916
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
917
                    elif callable(agg_name):  # noqa: E721
918
919
920
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
921
                else:
922
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
923
                    metric_agg = get_metric_aggregation(metric_name)
924
                    eval_logger.warning(
925
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
926
927
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
928
                    )
929
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
930

931
932
933
934
935
936
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
937
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
938
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
939
                        f"higher_is_better={is_higher_better(metric_name)}"
940
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
941
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
942

943
        self.download(self.config.dataset_kwargs)
944
945
946
        self._training_docs = None
        self._fewshot_docs = None

947
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
948
            self._filters = []
949
            for filter_config in self.config.filter_list:
950
951
952
953
954
955
956
957
958
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
959
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
960
        else:
961
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
962

963
964
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
965
            self.prompt = get_prompt(
966
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
967
            )
968
969
970
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
971
        if self.fewshot_docs() is not None:
972
973
974
975
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
976
977
978
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
995

996
        self.task_docs = self.eval_docs
997

998
        # Test One Doc
999
        self.features = list(self.task_docs.features.keys())
1000
1001
        self.multiple_input = 0
        self.multiple_target = 0
1002
        test_doc = self.task_docs[0]
1003
        test_text = self.doc_to_text(test_doc)
1004
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
1005

1006
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1007
            test_choice = self.doc_to_choice(test_doc)
1008
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
1009
                eval_logger.error("doc_to_choice must return list")
1010
1011
            else:
                num_choice = len(test_choice)
1012

1013
            if isinstance(test_text, int):
1014
                self.multiple_input = num_choice
1015
1016
        else:
            test_choice = None
1017

1018
        if isinstance(test_target, list):
1019
            self.multiple_target = len(test_target)
1020
        else:
1021
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1022
                test_target = test_choice[test_target]
1023
            else:
lintangsutawika's avatar
lintangsutawika committed
1024
                test_target = str(test_target)
1025

1026
1027
1028
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1029
            check_choices = [test_target]
1030
1031
1032
1033
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1034
1035
                    True
                    if self.config.target_delimiter.rstrip()
1036
                    != self.config.target_delimiter
1037
                    else False
1038
                )
1039

1040
                if delimiter_has_whitespace and choice_has_whitespace:
1041
1042
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1043
1044
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1045
                    eval_logger.debug(
1046
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1047
1048
                    )

1049
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1050
1051
1052
1053
1054
1055
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1056
    def has_training_docs(self) -> bool:
1057
        if self.config.training_split is not None:
1058
1059
1060
1061
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1062
    def has_validation_docs(self) -> bool:
1063
        if self.config.validation_split is not None:
1064
1065
1066
1067
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1068
    def has_test_docs(self) -> bool:
1069
        if self.config.test_split is not None:
1070
1071
1072
1073
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1074
    def training_docs(self) -> datasets.Dataset:
1075
        if self.has_training_docs():
1076
1077
1078
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1079
                )
1080
            return self.dataset[self.config.training_split]
1081

baberabb's avatar
baberabb committed
1082
    def validation_docs(self) -> datasets.Dataset:
1083
        if self.has_validation_docs():
1084
1085
1086
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1087
                )
1088
            return self.dataset[self.config.validation_split]
1089

baberabb's avatar
baberabb committed
1090
    def test_docs(self) -> datasets.Dataset:
1091
        if self.has_test_docs():
1092
1093
1094
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1095

1096
    def fewshot_docs(self):
1097
        if self.config.fewshot_split is not None:
1098
1099
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1100
            return self.dataset[self.config.fewshot_split]
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1113
        else:
1114
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1115
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1116
                    f"[Task: {self.config.task}] "
1117
1118
1119
1120
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1121

KonradSzafer's avatar
KonradSzafer committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1143
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1144
1145
1146
1147
1148
1149
1150
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1151
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1152
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1153
1154
1155
1156
1157
1158
1159
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1160
1161
1162
1163
1164
1165
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1166
1167
        :param chat_template: Callable
            Chat template to be applied to the fewshot context.
lintangsutawika's avatar
lintangsutawika committed
1168
1169
1170
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1171
1172
1173
1174
1175
1176
1177

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1178
1179
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1180

KonradSzafer's avatar
KonradSzafer committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1190
        else:
KonradSzafer's avatar
KonradSzafer committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1210
1211

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1212
1213
        if apply_chat_template:
            if self.multiple_input:
1214
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1226
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1240
            return chat_template(labeled_examples)
1241
        else:
KonradSzafer's avatar
KonradSzafer committed
1242
1243
            if self.multiple_input:
                return labeled_examples
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1254

1255
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1256
        """Iterates over FilterEnsembles and applies them to instances"""
1257
1258
        if hasattr(self, "_filters"):
            for f in self._filters:
1259
                f.apply(self._instances)
1260
1261
1262
1263
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1264
    def should_decontaminate(self):
1265
        return self.config.should_decontaminate
1266
1267

    def doc_to_decontamination_query(self, doc):
1268
        if self.config.should_decontaminate:
1269
1270
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1271
            else:
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1283

1284
    def _process_doc(self, doc: dict) -> dict:
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1296
1297
        if self.prompt is not None:
            doc_to_text = self.prompt
1298
        else:
1299
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1300

1301
        if isinstance(doc_to_text, int):
1302
            return doc_to_text
1303
        elif isinstance(doc_to_text, str):
1304
            if doc_to_text in self.features:
1305
                # if self.config.doc_to_choice is not None:
1306
1307
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1308
1309
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1310
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1311
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1312
1313
1314
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1315
        elif callable(doc_to_text):
1316
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1317
        # Used when applying a Promptsource template
1318
        elif hasattr(doc_to_text, "apply"):
1319
1320
1321
1322
1323
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1324
                return self.config.fewshot_delimiter
1325
        else:
1326
            print(type(doc_to_text))
1327
            raise TypeError
1328

1329
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1330
1331
        if self.prompt is not None:
            doc_to_target = self.prompt
1332
        else:
1333
            doc_to_target = self.config.doc_to_target
1334

1335
        if isinstance(doc_to_target, int):
1336
            return doc_to_target
1337
        elif isinstance(doc_to_target, str):
1338
            if doc_to_target in self.features:
1339
                # if self.config.doc_to_choice is not None:
1340
1341
1342
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1343
            else:
lintangsutawika's avatar
lintangsutawika committed
1344
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1345
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1346
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1347
1348
1349
1350
1351
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1352
1353
1354
1355
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1356
1357
                else:
                    return target_string
1358
        elif isinstance(doc_to_target, list):
1359
            return doc_to_target
1360
        elif callable(doc_to_target):
1361
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1362
        # Used when applying a Promptsource template
1363
        elif hasattr(doc_to_target, "apply"):
1364
            applied_prompt = doc_to_target.apply(doc)
1365
1366
1367
1368
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1369
                return self.config.fewshot_delimiter
1370
1371
        else:
            raise TypeError
1372

baberabb's avatar
baberabb committed
1373
    def doc_to_choice(self, doc: Any) -> List[str]:
1374
1375
        if self.prompt is not None:
            doc_to_choice = self.prompt
1376
        elif self.config.doc_to_choice is None:
1377
1378
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1379
            doc_to_choice = self.config.doc_to_choice
1380

1381
        if isinstance(doc_to_choice, str):
1382
1383
1384
1385
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1386
        elif isinstance(doc_to_choice, list):
1387
            return doc_to_choice
1388
        elif isinstance(doc_to_choice, dict):
1389
1390
1391
1392
1393
1394
1395
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1396

baberabb's avatar
baberabb committed
1397
1398
1399
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1400
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1401
            arguments = (ctx, self.doc_to_target(doc))
1402
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1403
            arguments = (self.doc_to_target(doc),)
1404
        elif self.OUTPUT_TYPE == "multiple_choice":
1405
            choices = self.doc_to_choice(doc)
1406
            target_delimiter = self.config.target_delimiter
1407
1408
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1409
                cont = self.doc_to_target(doc)
1410
1411
1412
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1413
            else:
1414
                # Otherwise they are placed in the continuation
1415
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1416

1417
            request_list = [
1418
1419
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1420
                    doc=doc,
1421
                    arguments=arg,
1422
                    idx=i,
1423
1424
                    **kwargs,
                )
1425
                for i, arg in enumerate(arguments)
1426
            ]
1427
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1428
            if "acc_mutual_info" in self._metric_fn_list.keys():
1429
1430
1431
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1432
                # here mutual info refers to calculating
1433
1434
1435
1436
1437
1438
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1439
                            doc=doc,
1440
                            arguments=("", "{}".format(choice)),
1441
1442
1443
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1444
                        for i, choice in enumerate(choices)
1445
1446
1447
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1448

1449
        elif self.OUTPUT_TYPE == "generate_until":
1450
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1451
1452

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1453
1454
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1455
1456

    def process_results(self, doc, results):
1457
1458
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1459

1460
        result_dict = {}
1461
        use_metric = list(self._metric_fn_list.keys())
1462
1463
1464
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1465
1466
1467
1468
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1469
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1470
            (loglikelihood,) = results
1471
1472
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1473
            return {
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1489
            }
1490
        elif self.OUTPUT_TYPE == "multiple_choice":
1491
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1492

1493
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1494
            choices = self.doc_to_choice(doc)
1495
1496
            completion_len = np.array([float(len(i)) for i in choices])

1497
1498
            if (
                2 * len(choices) == len(lls)
1499
                and "acc_mutual_info" in self._metric_fn_list.keys()
1500
1501
1502
1503
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1504
1505
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1506
1507
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1508

1509
1510
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1511

1512
1513
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1514
            else:
1515
                gold = self.doc_to_target(doc)
1516
1517

            gold_index_error = False
1518
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1519
1520
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1521
1522
                    gold_index_error = True
            else:
1523
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1524
                    gold = gold if gold < len(choices) else -100
1525
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1526
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1527

Lintang Sutawika's avatar
Lintang Sutawika committed
1528
                if gold == -100:
1529
1530
1531
1532
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1533
                    f"Label index was not in within range of available choices,"
1534
1535
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1536

1537
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1538
1539
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1540
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1541
1542
1543
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1544
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1545
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1546

Lintang Sutawika's avatar
Lintang Sutawika committed
1547
1548
1549
1550
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1551
            result_dict = {
1552
                **({"acc": acc} if "acc" in use_metric else {}),
1553
1554
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1555
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1556
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1557
1558
1559
1560
1561
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1562
1563
            }

1564
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1565
1566
1567
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1568
1569
1570
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1571
        elif self.OUTPUT_TYPE == "generate_until":
1572
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1573
            result = results[0]
1574
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1575
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1576
                # it assumes that doc_to_target returns a number.
1577
1578
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1579
1580
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1581
                gold = list(gold)
Chris's avatar
Chris committed
1582
1583
1584
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1585

lintangsutawika's avatar
lintangsutawika committed
1586
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1587
1588
1589
1590
1591
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1592
1593
1594
1595
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1596
1597
1598
1599
1600
1601
1602
1603
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1604
                    else:
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1626
                else:
1627
                    try:
1628
                        result_score = self._metric_fn_list[metric](
1629
1630
                            references=[gold],
                            predictions=[result],
1631
                            **self._metric_fn_kwargs[metric],
1632
                        )
1633
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1634
                        result_score = self._metric_fn_list[metric]([gold, result])
1635
1636
1637
1638
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1639
        else:
lintangsutawika's avatar
lintangsutawika committed
1640
1641
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1642
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1643
            )
1644
1645
1646

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1647
    def aggregation(self) -> dict:
1648
1649
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1650
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1651
        return self._higher_is_better
1652

Baber Abbasi's avatar
Baber Abbasi committed
1653
1654
1655
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1656
1657
1658
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1659

1660
1661
1662
1663
1664
1665
1666
1667
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1668
1669

class MultipleChoiceTask(Task):
1670
    OUTPUT_TYPE = "loglikelihood"
1671

baberabb's avatar
baberabb committed
1672
    def doc_to_target(self, doc: dict) -> str:
1673
1674
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1675
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1676
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1677
1678
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1679
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1680
                doc=doc,
1681
                arguments=(ctx, " {}".format(choice)),
1682
                idx=i,
1683
1684
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1685
1686
            for i, choice in enumerate(doc["choices"])
        ]
1687

1688
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1689
1690
1691
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1703
    def higher_is_better(self) -> dict:
1704
1705
1706
1707
1708
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1709
    def aggregation(self) -> dict:
1710
1711
1712
1713
1714
1715
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1716
class PerplexityTask(Task):
1717
1718
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1719
    def has_training_docs(self) -> bool:
1720
1721
        return False

baberabb's avatar
baberabb committed
1722
    def fewshot_examples(self, k: int, rnd) -> List:
1723
1724
1725
1726
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1727
1728
        return []

baberabb's avatar
baberabb committed
1729
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1730
1731
1732
1733
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1734
1735
1736

        return ""

baberabb's avatar
baberabb committed
1737
    def higher_is_better(self) -> dict:
1738
1739
1740
1741
1742
1743
1744
1745
1746
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1747
    def doc_to_text(self, doc) -> str:
1748
1749
1750
1751
1752
        return ""

    def doc_to_target(self, doc):
        return doc

1753
1754
1755
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1756

lintangsutawika's avatar
lintangsutawika committed
1757
1758
1759
1760
1761
1762
1763
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1764

1765
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1766
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1767
1768
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1769
1770
1771
1772
1773
1774
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1775
    def aggregation(self) -> dict:
1776
1777
1778
1779
1780
1781
1782
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1783
    def count_bytes(cls, doc) -> int:
1784
1785
1786
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1787
    def count_words(cls, doc) -> int:
1788
1789
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))