check_repo.py 45.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import sys
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
27
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
28
29
30
31
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
32
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
33

34
35
36
37
38

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
39
PATH_TO_DOC = "docs/source/en"
40

41
42
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
43
    "AltRobertaModel",
44
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
45
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
46
    "RealmBertModel",
47
    "T5Stack",
48
    "MT5Stack",
49
    "UMT5Stack",
50
    "SwitchTransformersStack",
51
    "TFDPRSpanPredictor",
52
53
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
54
55
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
56
57
]

58
59
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
60
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
61
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
62
    "InstructBlipQFormerModel",  # Building part of bigger (tested) model.
63
64
    "NllbMoeDecoder",
    "NllbMoeEncoder",
65
    "UMT5EncoderModel",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
66
    "LlamaDecoder",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
67
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
68
69
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
70
    "ErnieMForInformationExtraction",
71
72
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
73
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
74
75
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
76
77
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
78
79
    "InformerEncoder",  # Building part of bigger (tested) model.
    "InformerDecoder",  # Building part of bigger (tested) model.
80
81
    "AutoformerEncoder",  # Building part of bigger (tested) model.
    "AutoformerDecoder",  # Building part of bigger (tested) model.
82
83
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
84
85
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
86
    "OPTDecoder",  # Building part of bigger (tested) model.
87
88
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
89
90
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
91
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
92
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
93
94
95
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
96
97
98
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
99
100
101
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
102
103
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
104
105
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
106
    "MCTCTEncoder",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
107
    "MgpstrModel",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
108
109
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
110
111
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
112
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
113
    "BartEncoder",  # Building part of bigger (tested) model.
114
    "BertLMHeadModel",  # Needs to be setup as decoder.
115
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
116
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
117
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
118
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
119
    "MBartEncoder",  # Building part of bigger (tested) model.
120
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
121
122
123
124
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
125
    "MusicgenDecoder",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
126
127
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
128
    "PegasusEncoder",  # Building part of bigger (tested) model.
129
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
130
131
132
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
133
    "DPREncoder",  # Building part of bigger (tested) model.
134
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
135
136
137
138
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
139
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
140
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
141
    "TFDPREncoder",  # Building part of bigger (tested) model.
142
143
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
144
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
145
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
146
147
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
148
    "SeparableConv1D",  # Building part of bigger (tested) model.
149
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
150
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
151
    "OPTDecoderWrapper",
152
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
153
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
154
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
Matt's avatar
Matt committed
155
    "TFBlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
156
157
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
158
159
160
161
162
163
164
165
166
167
168
169
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
170
171
172
173
174
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
175
176
177
178
179
180
181
182
183
184
185
186
187
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
188
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
189
190
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
191
192
]

193
194
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
195
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
196
    # models to ignore for model xxx mapping
197
198
    "AlignTextModel",
    "AlignVisionModel",
199
200
201
202
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
203
204
205
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
206
    "ErnieMForInformationExtraction",
207
    "GitVisionModel",
208
209
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
210
211
212
213
214
215
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
Matt's avatar
Matt committed
216
217
218
219
220
221
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFBlipVisionModel",
    "TFBlipTextLMHeadModel",
    "TFBlipTextModel",
NielsRogge's avatar
NielsRogge committed
222
    "Swin2SRForImageSuperResolution",
223
224
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
225
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
226
227
228
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
229
    "EsmForProteinFolding",
230
    "GPTSanJapaneseModel",
231
    "TimeSeriesTransformerForPrediction",
232
    "InformerForPrediction",
233
    "AutoformerForPrediction",
234
235
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
236
237
238
239
240
241
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
242
    "SamModel",
NielsRogge's avatar
NielsRogge committed
243
    "DPTForDepthEstimation",
244
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
245
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
246
247
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
248
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
249
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
250
251
252
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
253
254
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
255
    "SegformerDecodeHead",
256
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
257
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
258
259
260
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
261
    "BeitForMaskedImageModeling",
262
263
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
264
    "CLIPTextModel",
265
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
266
    "CLIPVisionModel",
267
    "CLIPVisionModelWithProjection",
268
269
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
270
271
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
272
273
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
274
275
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
276
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
277
    "DetrForSegmentation",
Younes Belkada's avatar
Younes Belkada committed
278
279
280
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
281
    "ConditionalDetrForSegmentation",
282
283
    "DPRReader",
    "FlaubertForQuestionAnswering",
284
285
286
287
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
288
    "GPT2DoubleHeadsModel",
289
    "GPTSw3DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
290
291
    "InstructBlipVisionModel",
    "InstructBlipQFormerModel",
292
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
293
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
294
295
296
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
297
    "MgpstrModel",
298
    "OpenAIGPTDoubleHeadsModel",
299
300
301
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
302
303
304
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
305
306
307
308
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
309
    "TFDPRReader",
310
    "TFGPT2DoubleHeadsModel",
311
    "TFLayoutLMForQuestionAnswering",
312
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
313
314
315
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
316
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
317
    "HubertForCTC",
318
319
    "SEWForCTC",
    "SEWDForCTC",
320
321
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
322
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
323
324
325
326
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
327
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
328
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
329
330
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
331
332
333
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
334
    "TvltForAudioVisualClassification",
335
336
337
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
338
339
    "MusicgenModel",
    "MusicgenForConditionalGeneration",
340
341
]

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# DO NOT edit this list!
# (The corresponding pytorch objects should never be in the main `__init__`, but it's too late to remove)
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
    "FlaxBertLayer",
    "FlaxBigBirdLayer",
    "FlaxRoFormerLayer",
    "TFBertLayer",
    "TFLxmertEncoder",
    "TFLxmertXLayer",
    "TFMPNetLayer",
    "TFMobileBertLayer",
    "TFSegformerLayer",
    "TFViTMAELayer",
]

357
358
359
360
361
362
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
363
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
364
        ("donut-swin", "donut"),
365
366
367
368
    ]
)


369
# This is to make sure the transformers module imported is the one in the repo.
370
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
371
372


373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def check_missing_backends():
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


397
398
399
400
401
402
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
Sylvain Gugger's avatar
Sylvain Gugger committed
403
404
        if model == "deprecated":
            continue
405
406
407
408
409
410
411
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

412
    missing_models = sorted(set(_models).difference(models))
413
414
415
416
417
418
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


419
420
421
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
422
    """Get the model modules inside the transformers library."""
423
424
425
426
427
428
429
430
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
431
        "modeling_flax_auto",
432
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
433
        "modeling_flax_utils",
434
        "modeling_speech_encoder_decoder",
435
        "modeling_flax_speech_encoder_decoder",
436
        "modeling_flax_vision_encoder_decoder",
amyeroberts's avatar
amyeroberts committed
437
        "modeling_timm_backbone",
438
439
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
440
        "modeling_tf_encoder_decoder",
441
442
443
444
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
445
        "modeling_tf_vision_encoder_decoder",
446
        "modeling_vision_encoder_decoder",
447
448
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
449
    for model in dir(transformers.models):
Sylvain Gugger's avatar
Sylvain Gugger committed
450
451
        if model == "deprecated":
            continue
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
454
455
456
457
458
459
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
460
461
462
    return modules


463
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
464
    """Get the objects in module that are models."""
465
    models = []
466
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
467
    for attr_name in dir(module):
468
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
469
470
471
472
473
474
475
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


476
477
478
479
480
481
482
483
484
485
486
487
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
488
489
    if model.endswith("Prenet"):
        return True
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


508
509
510
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
511
512
513
514
515
516
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

517
518
519
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
520
        "test_modeling_flax_encoder_decoder",
521
        "test_modeling_flax_speech_encoder_decoder",
522
523
        "test_modeling_marian",
        "test_modeling_tf_common",
524
        "test_modeling_tf_encoder_decoder",
525
526
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
527
528
529
530
531
532
533
534
535
536
537
538
539
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
540
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
541
542
543
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

544
545
546
547
548
549
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
550
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
551
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
552
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
553
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
554
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
555
556
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
557
    if len(all_models) > 0:
558
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
559
560
561
562
563
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
564
565
566
567
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
568
    """Check models defined in module are tested in test_file."""
569
    # XxxPreTrainedModel are not tested
570
571
572
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
573
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
593
    """Check all models are properly tested."""
594
595
596
597
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
598
599
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
600
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
601
602
603
604
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
605
606
607
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
608
609
610
611
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


612
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
613
    """Return the list of all models in at least one auto class."""
614
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
615
616
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
617
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
618
619
620
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
621
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
622
623
624
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
625
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
626
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
627
    return list(result)
628
629


630
631
632
633
634
635
636
637
638
639
640
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


641
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
642
    """Check models defined in module are each in an auto class."""
643
644
645
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
646
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
647
648
649
650
651
652
653
654
655
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
656
    """Check all models are each in an auto class."""
657
    check_missing_backends()
658
659
660
661
662
663
664
665
666
667
668
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


669
670
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
671
    check_missing_backends()
672

673
    failures = []
674
    mappings_to_check = {
675
676
677
678
679
680
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

681
682
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
683
684
685
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
686
687
688
689
690
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
710
711
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
712
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
713

714
    failures = []
Yih-Dar's avatar
Yih-Dar committed
715
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
716
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
717
718
719
720
721
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

722
723
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
724
725
726
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
727
728
729
730
731
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Yih-Dar's avatar
Yih-Dar committed
732
733
734
735
736
737
738
739
740
741
        for model_type, class_names in mapping.items():
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def check_all_auto_mappings_importable():
    """Check all auto mappings could be imported."""
    check_missing_backends()

    failures = []
    mappings_to_check = {}
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, _ in mappings_to_check.items():
        name = name.replace("_MAPPING_NAMES", "_MAPPING")
        if not hasattr(transformers, name):
760
761
762
763
764
765
766
767
768
769
770
771
772
773
            failures.append(f"`{name}`")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_objects_being_equally_in_main_init():
    """Check if an object is in the main __init__ if its counterpart in PyTorch is."""
    attrs = dir(transformers)

    failures = []
    for attr in attrs:
        obj = getattr(transformers, attr)
        if hasattr(obj, "__module__"):
            module_path = obj.__module__
Sylvain Gugger's avatar
Sylvain Gugger committed
774
775
            if "models.deprecated" in module_path:
                continue
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
            module_name = module_path.split(".")[-1]
            module_dir = ".".join(module_path.split(".")[:-1])
            if (
                module_name.startswith("modeling_")
                and not module_name.startswith("modeling_tf_")
                and not module_name.startswith("modeling_flax_")
            ):
                parent_module = sys.modules[module_dir]

                frameworks = []
                if is_tf_available():
                    frameworks.append("TF")
                if is_flax_available():
                    frameworks.append("Flax")

                for framework in frameworks:
                    other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
                    if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
                        other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
                        other_module = getattr(parent_module, other_module_name)
                        if hasattr(other_module, f"{framework}{attr}"):
                            if not hasattr(transformers, f"{framework}{attr}"):
                                if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                    failures.append(f"{framework}{attr}")
                        if hasattr(other_module, f"{framework}_{attr}"):
                            if not hasattr(transformers, f"{framework}_{attr}"):
                                if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                    failures.append(f"{framework}_{attr}")
804
805
806
807
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
808
809
810
811
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
812
    """Check that in the test file `filename` the slow decorator is always last."""
813
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
830
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
831
832
833
834
835
836
837
838
839
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
840
841
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
842
843
844
        )


845
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
846
    """Parse the content of all doc files to detect which classes and functions it documents"""
847
848
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
849
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
850
851
852
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
853
    for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
Sylvain Gugger's avatar
Sylvain Gugger committed
854
855
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
856
        raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
857
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
858
859
860
861
862
863
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
864
    "BartPretrainedModel",
865
866
    "DataCollator",
    "DataCollatorForSOP",
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
882
    "TFBartPretrainedModel",
883
884
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
885
    "Wav2Vec2ForMaskedLM",
886
    "Wav2Vec2Tokenizer",
887
888
889
890
891
892
893
894
895
896
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
897
898
    "TFTrainer",
    "TFTrainingArguments",
899
900
901
902
903
904
905
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
906
    "CharacterTokenizer",  # Internal, should never have been in the main init.
907
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
908
    "DummyObject",  # Just picked by mistake sometimes.
909
    "MecabTokenizer",  # Internal, should never have been in the main init.
910
911
912
913
914
915
916
917
918
919
920
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
921
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
922
    "AltRobertaModel",  # Internal module
923
924
925
926
927
928
929
930
931
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
932
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
933
934
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
935
    "ConvNextV2Backbone",
936
    "DinatBackbone",
Alara Dirik's avatar
Alara Dirik committed
937
    "FocalNetBackbone",
NielsRogge's avatar
NielsRogge committed
938
    "MaskFormerSwinBackbone",
939
940
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
941
942
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
943
    "SwinBackbone",
amyeroberts's avatar
amyeroberts committed
944
945
    "TimmBackbone",
    "TimmBackboneConfig",
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
988
    """Check all models are properly documented."""
989
    documented_objs = find_all_documented_objects()
990
991
992
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
993
994
995
996
997
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
998
    check_docstrings_are_in_md()
999
1000
1001
1002
1003
1004
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
1005
    model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
1006
1007

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
1008
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
1054
        with open(file, encoding="utf-8") as f:
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
1068
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
1069
1070
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
1071
1072


1073
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
1074
    """Check all models are properly tested and documented."""
1075
1076
    print("Checking all models are included.")
    check_model_list()
1077
1078
    print("Checking all models are public.")
    check_models_are_in_init()
1079
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1080
    check_all_decorator_order()
1081
    check_all_models_are_tested()
1082
    print("Checking all objects are properly documented.")
1083
    check_all_objects_are_documented()
1084
1085
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
1086
1087
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
1088
1089
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
1090
1091
    print("Checking all auto mappings could be imported.")
    check_all_auto_mappings_importable()
1092
1093
    print("Checking all objects are equally (across frameworks) in the main __init__.")
    check_objects_being_equally_in_main_init()
1094
1095
1096
1097


if __name__ == "__main__":
    check_repo_quality()