check_repo.py 40.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
27
28
29
30
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
31
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
32

33
34
35
36
37

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
38
PATH_TO_DOC = "docs/source/en"
39

40
41
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
42
    "AltRobertaModel",
43
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
44
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
45
    "RealmBertModel",
46
    "T5Stack",
47
    "MT5Stack",
48
    "SwitchTransformersStack",
49
    "TFDPRSpanPredictor",
50
51
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
52
53
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
54
55
]

56
57
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
58
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
59
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
60
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
61
62
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
63
    "ErnieMForInformationExtraction",
64
65
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
66
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
67
68
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
69
70
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
71
72
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
73
74
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
75
    "OPTDecoder",  # Building part of bigger (tested) model.
76
77
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
78
79
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
80
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
81
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
82
83
84
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
85
86
87
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
88
89
90
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
91
92
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
93
94
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
95
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
96
97
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
98
99
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
100
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
101
    "BartEncoder",  # Building part of bigger (tested) model.
102
    "BertLMHeadModel",  # Needs to be setup as decoder.
103
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
104
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
105
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
106
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
107
    "MBartEncoder",  # Building part of bigger (tested) model.
108
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
109
110
111
112
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
113
114
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
115
    "PegasusEncoder",  # Building part of bigger (tested) model.
116
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
117
118
119
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
120
    "DPREncoder",  # Building part of bigger (tested) model.
121
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
122
123
124
125
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
126
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
127
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
128
    "TFDPREncoder",  # Building part of bigger (tested) model.
129
130
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
131
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
132
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
133
134
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
135
    "SeparableConv1D",  # Building part of bigger (tested) model.
136
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
137
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
138
    "OPTDecoderWrapper",
139
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
140
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
141
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
142
143
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
144
145
146
147
148
149
150
151
152
153
154
155
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
156
157
158
159
160
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
161
162
163
164
165
166
167
168
169
170
171
172
173
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
174
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
175
176
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
177
178
]

179
180
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
181
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
182
    # models to ignore for model xxx mapping
183
184
    "AlignTextModel",
    "AlignVisionModel",
185
186
187
188
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
189
190
191
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
192
    "ErnieMForInformationExtraction",
193
    "GitVisionModel",
194
195
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
196
197
198
199
200
201
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
202
    "Swin2SRForImageSuperResolution",
203
204
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
205
206
207
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
208
    "EsmForProteinFolding",
209
    "GPTSanJapaneseModel",
210
    "TimeSeriesTransformerForPrediction",
211
212
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
213
214
215
216
217
218
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
219
    "DPTForDepthEstimation",
220
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
221
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
222
223
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
224
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
225
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
226
227
228
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
229
230
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
231
    "SegformerDecodeHead",
232
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
233
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
234
235
236
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
237
    "BeitForMaskedImageModeling",
238
239
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
240
    "CLIPTextModel",
241
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
242
    "CLIPVisionModel",
243
    "CLIPVisionModelWithProjection",
244
245
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
246
247
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
248
249
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
250
251
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
252
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
253
    "DetrForSegmentation",
254
    "ConditionalDetrForSegmentation",
255
256
    "DPRReader",
    "FlaubertForQuestionAnswering",
257
258
259
260
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
261
    "GPT2DoubleHeadsModel",
262
    "GPTSw3DoubleHeadsModel",
263
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
264
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
265
266
267
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
268
    "OpenAIGPTDoubleHeadsModel",
269
270
271
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
272
273
274
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
275
276
277
278
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
279
    "TFDPRReader",
280
    "TFGPT2DoubleHeadsModel",
281
    "TFLayoutLMForQuestionAnswering",
282
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
283
284
285
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
286
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
287
    "HubertForCTC",
288
289
    "SEWForCTC",
    "SEWDForCTC",
290
291
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
292
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
293
294
295
296
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
297
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
298
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
299
300
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
301
302
303
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
304
    "TvltForAudioVisualClassification",
305
306
307
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
308
309
]

310
311
312
313
314
315
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
316
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
317
        ("donut-swin", "donut"),
318
319
320
321
    ]
)


322
# This is to make sure the transformers module imported is the one in the repo.
323
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
324
325


326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def check_missing_backends():
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


350
351
352
353
354
355
356
357
358
359
360
361
362
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

363
    missing_models = sorted(set(_models).difference(models))
364
365
366
367
368
369
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


370
371
372
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
373
    """Get the model modules inside the transformers library."""
374
375
376
377
378
379
380
381
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
382
        "modeling_flax_auto",
383
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
384
        "modeling_flax_utils",
385
        "modeling_speech_encoder_decoder",
386
        "modeling_flax_speech_encoder_decoder",
387
        "modeling_flax_vision_encoder_decoder",
388
389
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
390
        "modeling_tf_encoder_decoder",
391
392
393
394
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
395
        "modeling_tf_vision_encoder_decoder",
396
        "modeling_vision_encoder_decoder",
397
398
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
399
400
401
402
403
404
405
406
407
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
408
409
410
    return modules


411
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
412
    """Get the objects in module that are models."""
413
    models = []
414
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
415
    for attr_name in dir(module):
416
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
417
418
419
420
421
422
423
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


424
425
426
427
428
429
430
431
432
433
434
435
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
436
437
    if model.endswith("Prenet"):
        return True
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


456
457
458
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
459
460
461
462
463
464
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

465
466
467
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
468
        "test_modeling_flax_encoder_decoder",
469
        "test_modeling_flax_speech_encoder_decoder",
470
471
        "test_modeling_marian",
        "test_modeling_tf_common",
472
        "test_modeling_tf_encoder_decoder",
473
474
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
475
476
477
478
479
480
481
482
483
484
485
486
487
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
488
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
489
490
491
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

492
493
494
495
496
497
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
498
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
499
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
500
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
501
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
502
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
503
504
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
505
    if len(all_models) > 0:
506
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
507
508
509
510
511
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
512
513
514
515
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
516
    """Check models defined in module are tested in test_file."""
517
    # XxxPreTrainedModel are not tested
518
519
520
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
521
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
541
    """Check all models are properly tested."""
542
543
544
545
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
546
547
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
548
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
549
550
551
552
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
553
554
555
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
556
557
558
559
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


560
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
561
    """Return the list of all models in at least one auto class."""
562
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
563
564
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
565
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
566
567
568
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
569
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
570
571
572
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
573
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
574
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
575
    return list(result)
576
577


578
579
580
581
582
583
584
585
586
587
588
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


589
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
590
    """Check models defined in module are each in an auto class."""
591
592
593
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
594
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
595
596
597
598
599
600
601
602
603
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
604
    """Check all models are each in an auto class."""
605
    check_missing_backends()
606
607
608
609
610
611
612
613
614
615
616
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


617
618
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
619
    check_missing_backends()
620

621
    failures = []
622
    mappings_to_check = {
623
624
625
626
627
628
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

629
630
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
631
632
633
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
634
635
636
637
638
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
658
659
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
660
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
661

662
    failures = []
Yih-Dar's avatar
Yih-Dar committed
663
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
664
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
665
666
667
668
669
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

670
671
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
672
673
674
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
675
676
677
678
679
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Yih-Dar's avatar
Yih-Dar committed
680
681
682
683
684
685
686
687
688
689
        for model_type, class_names in mapping.items():
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
690
691
692
693
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
694
    """Check that in the test file `filename` the slow decorator is always last."""
695
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
712
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
713
714
715
716
717
718
719
720
721
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
722
723
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
724
725
726
        )


727
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
728
    """Parse the content of all doc files to detect which classes and functions it documents"""
729
730
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
731
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
732
733
734
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
735
736
737
738
739
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
740
741
742
743
744
745
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
746
    "BartPretrainedModel",
747
748
    "DataCollator",
    "DataCollatorForSOP",
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
764
    "TFBartPretrainedModel",
765
766
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
767
    "Wav2Vec2ForMaskedLM",
768
    "Wav2Vec2Tokenizer",
769
770
771
772
773
774
775
776
777
778
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
779
780
    "TFTrainer",
    "TFTrainingArguments",
781
782
783
784
785
786
787
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
788
    "CharacterTokenizer",  # Internal, should never have been in the main init.
789
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
790
    "DummyObject",  # Just picked by mistake sometimes.
791
    "MecabTokenizer",  # Internal, should never have been in the main init.
792
793
794
795
796
797
798
799
800
801
802
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
803
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
804
    "AltRobertaModel",  # Internal module
805
806
807
808
809
810
811
812
813
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
814
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
815
816
    "BitBackbone",
    "ConvNextBackbone",
817
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
818
    "MaskFormerSwinBackbone",
819
820
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
821
822
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
823
    "SwinBackbone",
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
866
    """Check all models are properly documented."""
867
    documented_objs = find_all_documented_objects()
868
869
870
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
871
872
873
874
875
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
876
    check_docstrings_are_in_md()
877
878
879
880
881
882
883
884
885
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
886
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
932
        with open(file, encoding="utf-8") as f:
933
934
935
936
937
938
939
940
941
942
943
944
945
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
946
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
947
948
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
949
950


951
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
952
    """Check all models are properly tested and documented."""
953
954
    print("Checking all models are included.")
    check_model_list()
955
956
    print("Checking all models are public.")
    check_models_are_in_init()
957
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
958
    check_all_decorator_order()
959
    check_all_models_are_tested()
960
    print("Checking all objects are properly documented.")
961
    check_all_objects_are_documented()
962
963
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
964
965
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
966
967
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
968
969
970
971


if __name__ == "__main__":
    check_repo_quality()