check_repo.py 29.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
39
    "RealmBertModel",
40
41
42
43
    "T5Stack",
    "TFDPRSpanPredictor",
]

44
45
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
46
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
47
    # models to ignore for not tested
48
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
49
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
50
51
52
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
53
54
55
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
56
57
58
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
59
60
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
61
62
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
63
64
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
65
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
66
    "BartEncoder",  # Building part of bigger (tested) model.
67
    "BertLMHeadModel",  # Needs to be setup as decoder.
68
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
69
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
70
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
71
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
72
    "MBartEncoder",  # Building part of bigger (tested) model.
73
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
74
75
76
77
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
78
    "PegasusEncoder",  # Building part of bigger (tested) model.
79
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
80
    "DPREncoder",  # Building part of bigger (tested) model.
81
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
82
83
84
85
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
86
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
87
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
88
    "TFDPREncoder",  # Building part of bigger (tested) model.
89
90
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
91
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
92
    "SeparableConv1D",  # Building part of bigger (tested) model.
93
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
94
95
96
97
98
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
99
    "decision_transformer/test_modeling_decision_transformer.py",
100
101
102
103
104
105
106
107
    "camembert/test_modeling_camembert.py",
    "mt5/test_modeling_flax_mt5.py",
    "mbart/test_modeling_mbart.py",
    "mt5/test_modeling_mt5.py",
    "pegasus/test_modeling_pegasus.py",
    "camembert/test_modeling_tf_camembert.py",
    "mt5/test_modeling_tf_mt5.py",
    "xlm_roberta/test_modeling_tf_xlm_roberta.py",
108
    "xlm_roberta/test_modeling_flax_xlm_roberta.py",
109
110
111
112
    "xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "xlm_roberta/test_modeling_xlm_roberta.py",
    "vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
113
    "decision_transformer/test_modeling_decision_transformer.py",
114
115
]

116
117
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
118
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
119
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
120
    "DPTForDepthEstimation",
121
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
122
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
123
124
125
126
    "ViltForQuestionAnswering",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
127
128
129
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
130
131
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
132
    "SegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
133
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
134
135
136
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
137
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
138
139
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
140
141
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
142
143
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
144
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
145
    "DetrForSegmentation",
146
147
148
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
149
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
150
151
152
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
153
154
155
156
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
157
158
159
160
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
161
    "TFDPRReader",
162
163
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
164
165
166
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
167
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
168
    "HubertForCTC",
169
170
    "SEWForCTC",
    "SEWDForCTC",
171
172
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
173
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
174
175
176
177
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
178
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
179
    "TFHubertForCTC",
180
    "MaskFormerForInstanceSegmentation",
181
182
]

183
184
185
186
187
188
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
189
        ("data2vec-vision", "data2vec"),
190
191
192
193
    ]
)


194
195
196
197
198
199
200
201
202
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


223
224
225
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
226
    """Get the model modules inside the transformers library."""
227
228
229
230
231
232
233
234
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
235
        "modeling_flax_auto",
236
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
237
        "modeling_flax_utils",
238
        "modeling_speech_encoder_decoder",
239
        "modeling_flax_speech_encoder_decoder",
240
        "modeling_flax_vision_encoder_decoder",
241
242
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
243
        "modeling_tf_encoder_decoder",
244
245
246
247
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
248
        "modeling_tf_vision_encoder_decoder",
249
        "modeling_vision_encoder_decoder",
250
251
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
254
255
256
257
258
259
260
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
261
262
263
    return modules


264
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
265
    """Get the objects in module that are models."""
266
    models = []
267
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
268
    for attr_name in dir(module):
269
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
270
271
272
273
274
275
276
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


307
308
309
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
310
    """Get the model test files."""
311
312
313
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
314
        "test_modeling_flax_encoder_decoder",
315
        "test_modeling_flax_speech_encoder_decoder",
316
317
        "test_modeling_marian",
        "test_modeling_tf_common",
318
        "test_modeling_tf_encoder_decoder",
319
320
    ]
    test_files = []
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    for file_or_dir in os.listdir(PATH_TO_TESTS):
        path = os.path.join(PATH_TO_TESTS, file_or_dir)
        if os.path.isdir(path):
            filenames = [os.path.join(file_or_dir, file) for file in os.listdir(path)]
        else:
            filenames = [file_or_dir]

        for filename in filenames:
            if (
                os.path.isfile(os.path.join(PATH_TO_TESTS, filename))
                and "test_modeling" in filename
                and not os.path.splitext(filename)[0] in _ignore_files
            ):
                test_files.append(filename)
335
336
337
338
339
340
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
341
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
342
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
343
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
344
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
345
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
346
347
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
348
    if len(all_models) > 0:
349
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
350
351
352
353
354
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
355
356
357
358
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
359
    """Check models defined in module are tested in test_file."""
360
    # XxxPreTrainedModel are not tested
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
384
    """Check all models are properly tested."""
385
386
387
388
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
389
390
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
391
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
392
393
394
395
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
396
397
398
399
400
401
402
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


403
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
404
    """Return the list of all models in at least one auto class."""
405
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
406
407
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
408
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
409
410
411
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
412
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
413
414
415
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
416
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
417
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
418
    return [cls for cls in result]
419
420


421
422
423
424
425
426
427
428
429
430
431
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


432
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
433
    """Check models defined in module are each in an auto class."""
434
435
436
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
437
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
438
439
440
441
442
443
444
445
446
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
447
    """Check all models are each in an auto class."""
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
469
470
471
472
473
474
475
476
477
478
479
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
480
481
482
483
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
484
    """Check that in the test file `filename` the slow decorator is always last."""
485
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
502
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505
506
507
508
509
510
511
512
513
514
515
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


516
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
517
    """Parse the content of all doc files to detect which classes and functions it documents"""
518
519
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
520
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
521
522
523
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
524
525
526
527
528
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
529
530
531
532
533
534
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
535
    "BartPretrainedModel",
536
537
    "DataCollator",
    "DataCollatorForSOP",
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
553
    "TFBartPretrainedModel",
554
555
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
556
    "Wav2Vec2ForMaskedLM",
557
    "Wav2Vec2Tokenizer",
558
559
560
561
562
563
564
565
566
567
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
568
569
    "TFTrainer",
    "TFTrainingArguments",
570
571
572
573
574
575
576
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
577
    "CharacterTokenizer",  # Internal, should never have been in the main init.
578
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
579
    "DummyObject",  # Just picked by mistake sometimes.
580
    "MecabTokenizer",  # Internal, should never have been in the main init.
581
582
583
584
585
586
587
588
589
590
591
592
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
593
    "requires_backends",  # Internal function
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
645
    """Check all models are properly documented."""
646
    documented_objs = find_all_documented_objects()
647
648
649
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
650
651
652
653
654
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
655
    check_docstrings_are_in_md()
656
657
658
659
660
661
662
663
664
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
665
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
725
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
726
727
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
728
729


730
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
731
    """Check all models are properly tested and documented."""
732
733
    print("Checking all models are included.")
    check_model_list()
734
735
    print("Checking all models are public.")
    check_models_are_in_init()
736
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
737
    check_all_decorator_order()
738
    check_all_models_are_tested()
739
    print("Checking all objects are properly documented.")
740
    check_all_objects_are_documented()
741
742
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
743
744
745
746


if __name__ == "__main__":
    check_repo_quality()