check_repo.py 30.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
42
43
44
    "T5Stack",
    "TFDPRSpanPredictor",
]

45
46
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
47
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
48
    # models to ignore for not tested
Younes Belkada's avatar
Younes Belkada committed
49
    "OPTDecoder",  # Building part of bigger (tested) model.
50
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
51
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
52
53
54
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
55
56
57
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
58
59
60
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
61
62
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
63
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
64
65
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
66
67
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
68
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
69
    "BartEncoder",  # Building part of bigger (tested) model.
70
    "BertLMHeadModel",  # Needs to be setup as decoder.
71
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
72
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
73
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
74
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
75
    "MBartEncoder",  # Building part of bigger (tested) model.
76
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
77
78
79
80
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
81
82
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
83
    "PegasusEncoder",  # Building part of bigger (tested) model.
84
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
85
    "DPREncoder",  # Building part of bigger (tested) model.
86
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
87
88
89
90
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
91
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
92
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
93
    "TFDPREncoder",  # Building part of bigger (tested) model.
94
95
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
96
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
97
    "SeparableConv1D",  # Building part of bigger (tested) model.
98
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
99
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
100
    "OPTDecoderWrapper",
101
102
103
104
105
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
121
122
]

123
124
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
125
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
126
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
127
    "DPTForDepthEstimation",
128
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
129
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
130
131
132
133
    "ViltForQuestionAnswering",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
134
135
136
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
137
138
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
139
    "SegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
140
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
141
142
143
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
144
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
145
146
    "CLIPTextModel",
    "CLIPVisionModel",
147
148
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
149
150
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
151
152
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
153
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
154
    "DetrForSegmentation",
155
156
    "DPRReader",
    "FlaubertForQuestionAnswering",
157
158
159
160
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
161
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
162
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
163
164
165
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
166
167
168
169
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
170
171
172
173
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
174
    "TFDPRReader",
175
176
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
177
178
179
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
180
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
181
    "HubertForCTC",
182
183
    "SEWForCTC",
    "SEWDForCTC",
184
185
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
186
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
187
188
189
190
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
191
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
192
    "TFHubertForCTC",
193
    "MaskFormerForInstanceSegmentation",
194
195
]

196
197
198
199
200
201
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
202
        ("data2vec-vision", "data2vec"),
203
204
205
206
    ]
)


207
208
209
210
211
212
213
214
215
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


236
237
238
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
239
    """Get the model modules inside the transformers library."""
240
241
242
243
244
245
246
247
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
248
        "modeling_flax_auto",
249
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
250
        "modeling_flax_utils",
251
        "modeling_speech_encoder_decoder",
252
        "modeling_flax_speech_encoder_decoder",
253
        "modeling_flax_vision_encoder_decoder",
254
255
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
256
        "modeling_tf_encoder_decoder",
257
258
259
260
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
261
        "modeling_tf_vision_encoder_decoder",
262
        "modeling_vision_encoder_decoder",
263
264
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
267
268
269
270
271
272
273
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
274
275
276
    return modules


277
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
278
    """Get the objects in module that are models."""
279
    models = []
280
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
281
    for attr_name in dir(module):
282
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
283
284
285
286
287
288
289
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


320
321
322
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
323
324
325
326
327
328
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

329
330
331
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
332
        "test_modeling_flax_encoder_decoder",
333
        "test_modeling_flax_speech_encoder_decoder",
334
335
        "test_modeling_marian",
        "test_modeling_tf_common",
336
        "test_modeling_tf_encoder_decoder",
337
338
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

356
357
358
359
360
361
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
362
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
363
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
364
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
365
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
366
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
367
368
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
369
    if len(all_models) > 0:
370
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
371
372
373
374
375
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
376
377
378
379
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
380
    """Check models defined in module are tested in test_file."""
381
    # XxxPreTrainedModel are not tested
382
383
384
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
385
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
405
    """Check all models are properly tested."""
406
407
408
409
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
410
411
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
412
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
413
414
415
416
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
417
418
419
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
420
421
422
423
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


424
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
425
    """Return the list of all models in at least one auto class."""
426
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
427
428
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
429
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
430
431
432
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
433
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
434
435
436
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
437
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
438
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
439
    return [cls for cls in result]
440
441


442
443
444
445
446
447
448
449
450
451
452
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


453
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
454
    """Check models defined in module are each in an auto class."""
455
456
457
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
458
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
459
460
461
462
463
464
465
466
467
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
468
    """Check all models are each in an auto class."""
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
490
491
492
493
494
495
496
497
498
499
500
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503
504
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
505
    """Check that in the test file `filename` the slow decorator is always last."""
506
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
523
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
524
525
526
527
528
529
530
531
532
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
533
534
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
535
536
537
        )


538
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
539
    """Parse the content of all doc files to detect which classes and functions it documents"""
540
541
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
542
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
543
544
545
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
546
547
548
549
550
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
551
552
553
554
555
556
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
557
    "BartPretrainedModel",
558
559
    "DataCollator",
    "DataCollatorForSOP",
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
575
    "TFBartPretrainedModel",
576
577
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
578
    "Wav2Vec2ForMaskedLM",
579
    "Wav2Vec2Tokenizer",
580
581
582
583
584
585
586
587
588
589
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
590
591
    "TFTrainer",
    "TFTrainingArguments",
592
593
594
595
596
597
598
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
599
    "CharacterTokenizer",  # Internal, should never have been in the main init.
600
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
601
    "DummyObject",  # Just picked by mistake sometimes.
602
    "MecabTokenizer",  # Internal, should never have been in the main init.
603
604
605
606
607
608
609
610
611
612
613
614
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
615
    "requires_backends",  # Internal function
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
667
    """Check all models are properly documented."""
668
    documented_objs = find_all_documented_objects()
669
670
671
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
672
673
674
675
676
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
677
    check_docstrings_are_in_md()
678
679
680
681
682
683
684
685
686
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
687
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
733
        with open(file, encoding="utf-8") as f:
734
735
736
737
738
739
740
741
742
743
744
745
746
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
747
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
748
749
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
750
751


752
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
753
    """Check all models are properly tested and documented."""
754
755
    print("Checking all models are included.")
    check_model_list()
756
757
    print("Checking all models are public.")
    check_models_are_in_init()
758
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
759
    check_all_decorator_order()
760
    check_all_models_are_tested()
761
    print("Checking all objects are properly documented.")
762
    check_all_objects_are_documented()
763
764
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
765
766
767
768


if __name__ == "__main__":
    check_repo_quality()