check_repo.py 27.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
25
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
26
27
from transformers.models.auto import get_values

28
29
30
31
32

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
33
PATH_TO_DOC = "docs/source"
34

35
36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
38
    "RealmBertModel",
39
40
41
42
    "T5Stack",
    "TFDPRSpanPredictor",
]

43
44
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
45
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
46
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
47
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
48
49
50
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
51
52
53
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
54
55
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
56
57
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
58
59
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
60
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
61
    "BartEncoder",  # Building part of bigger (tested) model.
62
    "BertLMHeadModel",  # Needs to be setup as decoder.
63
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
64
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
65
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
66
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
67
    "MBartEncoder",  # Building part of bigger (tested) model.
68
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
69
70
71
72
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
73
    "PegasusEncoder",  # Building part of bigger (tested) model.
74
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
75
    "DPREncoder",  # Building part of bigger (tested) model.
76
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
77
78
79
80
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
81
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
82
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
83
    "TFDPREncoder",  # Building part of bigger (tested) model.
84
85
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
86
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
87
    "SeparableConv1D",  # Building part of bigger (tested) model.
88
89
90
91
92
93
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
94
    "test_modeling_flax_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
95
    "test_modeling_mbart.py",
Patrick von Platen's avatar
Patrick von Platen committed
96
    "test_modeling_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
97
    "test_modeling_pegasus.py",
98
    "test_modeling_tf_camembert.py",
Sylvain Gugger's avatar
Sylvain Gugger committed
99
    "test_modeling_tf_mt5.py",
100
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
101
    "test_modeling_xlm_prophetnet.py",
102
    "test_modeling_xlm_roberta.py",
Suraj Patil's avatar
Suraj Patil committed
103
104
    "test_modeling_vision_text_dual_encoder.py",
    "test_modeling_flax_vision_text_dual_encoder.py",
105
106
]

107
108
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
109
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
110
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
111
112
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
113
114
    "SegformerDecodeHead",
    "SegformerForSemanticSegmentation",
115
    "BeitForSemanticSegmentation",
Kamal Raj's avatar
Kamal Raj committed
116
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
117
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
118
119
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
120
121
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
122
123
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
124
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
125
    "DetrForSegmentation",
126
127
128
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
129
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
130
131
132
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
133
134
135
136
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
137
138
139
140
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
141
    "TFDPRReader",
142
143
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
144
145
146
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
147
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
148
    "HubertForCTC",
149
150
    "SEWForCTC",
    "SEWDForCTC",
151
152
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
153
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
154
155
156
157
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
158
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
159
    "TFHubertForCTC",
160
161
]

162
163
164
165
166
167
168
169
170
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


191
192
193
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
194
    """Get the model modules inside the transformers library."""
195
196
197
198
199
200
201
202
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
203
        "modeling_flax_auto",
204
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
205
        "modeling_flax_utils",
206
        "modeling_speech_encoder_decoder",
207
        "modeling_flax_vision_encoder_decoder",
208
209
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
210
        "modeling_tf_encoder_decoder",
211
212
213
214
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
215
        "modeling_tf_vision_encoder_decoder",
216
        "modeling_vision_encoder_decoder",
217
218
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
222
223
224
225
226
227
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
228
229
230
    return modules


231
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
232
    """Get the objects in module that are models."""
233
    models = []
234
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
235
    for attr_name in dir(module):
236
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
237
238
239
240
241
242
243
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


274
275
276
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
277
    """Get the model test files."""
278
279
280
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
281
        "test_modeling_flax_encoder_decoder",
282
283
        "test_modeling_marian",
        "test_modeling_tf_common",
284
        "test_modeling_tf_encoder_decoder",
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
300
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
302
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
303
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
304
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
305
306
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
307
    if len(all_models) > 0:
308
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
309
310
311
312
313
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
314
315
316
317
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
318
    """Check models defined in module are tested in test_file."""
319
    # XxxPreTrainedModel are not tested
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
343
    """Check all models are properly tested."""
344
345
346
347
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
348
        test_file = f"test_{module.__name__.split('.')[-1]}.py"
349
350
351
352
353
354
355
356
357
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


358
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
359
    """Return the list of all models in at least one auto class."""
360
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
361
362
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
363
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
364
365
366
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
367
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
368
369
370
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
371
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
372
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
373
    return [cls for cls in result]
374
375


376
377
378
379
380
381
382
383
384
385
386
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


387
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
388
    """Check models defined in module are each in an auto class."""
389
390
391
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
392
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
393
394
395
396
397
398
399
400
401
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
402
    """Check all models are each in an auto class."""
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
424
425
426
427
428
429
430
431
432
433
434
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
435
436
437
438
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
439
    """Check that in the test file `filename` the slow decorator is always last."""
440
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
457
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
458
459
460
461
462
463
464
465
466
467
468
469
470
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


471
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
472
    """Parse the content of all doc files to detect which classes and functions it documents"""
473
474
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
475
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
476
477
478
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
479
480
481
482
483
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
484
485
486
487
488
489
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
490
    "BartPretrainedModel",
491
492
    "DataCollator",
    "DataCollatorForSOP",
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
508
    "TFBartPretrainedModel",
509
510
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
511
    "Wav2Vec2ForMaskedLM",
512
    "Wav2Vec2Tokenizer",
513
514
515
516
517
518
519
520
521
522
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
523
524
    "TFTrainer",
    "TFTrainingArguments",
525
526
527
528
529
530
531
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
532
    "CharacterTokenizer",  # Internal, should never have been in the main init.
533
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
534
    "DummyObject",  # Just picked by mistake sometimes.
535
    "MecabTokenizer",  # Internal, should never have been in the main init.
536
537
538
539
540
541
542
543
544
545
546
547
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
548
    "requires_backends",  # Internal function
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
600
    """Check all models are properly documented."""
601
    documented_objs = find_all_documented_objects()
602
603
604
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
605
606
607
608
609
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
610
    check_docstrings_are_in_md()
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
679
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
680
681
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
682
683


684
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
685
    """Check all models are properly tested and documented."""
686
687
    print("Checking all models are included.")
    check_model_list()
688
689
    print("Checking all models are public.")
    check_models_are_in_init()
690
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
691
    check_all_decorator_order()
692
    check_all_models_are_tested()
693
    print("Checking all objects are properly documented.")
694
    check_all_objects_are_documented()
695
696
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
697
698
699
700


if __name__ == "__main__":
    check_repo_quality()