check_repo.py 33.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
    "T5Stack",
42
    "SwitchTransformersStack",
43
    "TFDPRSpanPredictor",
44
45
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
46
47
]

48
49
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
50
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
51
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
52
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
53
54
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
55
56
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
57
58
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
59
60
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
61
    "OPTDecoder",  # Building part of bigger (tested) model.
62
63
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
64
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
65
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
66
67
68
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
69
70
71
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
72
73
74
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
75
76
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
77
78
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
79
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
80
81
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
84
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
85
    "BartEncoder",  # Building part of bigger (tested) model.
86
    "BertLMHeadModel",  # Needs to be setup as decoder.
87
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
88
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
89
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
90
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
91
    "MBartEncoder",  # Building part of bigger (tested) model.
92
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
93
94
95
96
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
97
98
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
99
    "PegasusEncoder",  # Building part of bigger (tested) model.
100
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
101
102
103
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
104
    "DPREncoder",  # Building part of bigger (tested) model.
105
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
106
107
108
109
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
110
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
111
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
112
    "TFDPREncoder",  # Building part of bigger (tested) model.
113
114
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
115
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
116
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
117
118
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
119
    "SeparableConv1D",  # Building part of bigger (tested) model.
120
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
121
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
122
    "OPTDecoderWrapper",
123
    "TFSegformerDecodeHead",  # Not a regular model.
124
125
126
127
128
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
144
145
]

146
147
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
148
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
149
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
150
    "Swin2SRForImageSuperResolution",
NielsRogge's avatar
NielsRogge committed
151
152
153
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
154
    "EsmForProteinFolding",
155
    "TimeSeriesTransformerForPrediction",
156
157
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
158
159
160
161
162
163
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
164
    "DPTForDepthEstimation",
165
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
166
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
167
168
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
169
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
170
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
171
172
173
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
174
175
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
176
    "SegformerDecodeHead",
177
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
178
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
179
180
181
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
182
    "BeitForMaskedImageModeling",
183
184
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
185
    "CLIPTextModel",
186
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
187
    "CLIPVisionModel",
188
    "CLIPVisionModelWithProjection",
189
190
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
191
192
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
193
194
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
195
196
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
197
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
198
    "DetrForSegmentation",
199
    "ConditionalDetrForSegmentation",
200
201
    "DPRReader",
    "FlaubertForQuestionAnswering",
202
203
204
205
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
206
    "GPT2DoubleHeadsModel",
207
    "GPTSw3DoubleHeadsModel",
208
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
209
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
210
211
212
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
213
    "OpenAIGPTDoubleHeadsModel",
214
215
216
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
217
218
219
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
220
221
222
223
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
224
    "TFDPRReader",
225
    "TFGPT2DoubleHeadsModel",
226
    "TFLayoutLMForQuestionAnswering",
227
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
228
229
230
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
231
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
232
    "HubertForCTC",
233
234
    "SEWForCTC",
    "SEWDForCTC",
235
236
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
237
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
238
239
240
241
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
242
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
243
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
244
245
    "XCLIPVisionModel",
    "XCLIPTextModel",
246
247
]

248
249
250
251
252
253
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
254
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
255
        ("donut-swin", "donut"),
256
257
258
259
    ]
)


260
261
262
263
264
265
266
267
268
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


289
290
291
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
292
    """Get the model modules inside the transformers library."""
293
294
295
296
297
298
299
300
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
301
        "modeling_flax_auto",
302
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
303
        "modeling_flax_utils",
304
        "modeling_speech_encoder_decoder",
305
        "modeling_flax_speech_encoder_decoder",
306
        "modeling_flax_vision_encoder_decoder",
307
308
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
309
        "modeling_tf_encoder_decoder",
310
311
312
313
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
314
        "modeling_tf_vision_encoder_decoder",
315
        "modeling_vision_encoder_decoder",
316
317
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
320
321
322
323
324
325
326
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
327
328
329
    return modules


330
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
331
    """Get the objects in module that are models."""
332
    models = []
333
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
334
    for attr_name in dir(module):
335
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
336
337
338
339
340
341
342
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


373
374
375
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
376
377
378
379
380
381
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

382
383
384
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
385
        "test_modeling_flax_encoder_decoder",
386
        "test_modeling_flax_speech_encoder_decoder",
387
388
        "test_modeling_marian",
        "test_modeling_tf_common",
389
        "test_modeling_tf_encoder_decoder",
390
391
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

409
410
411
412
413
414
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
415
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
416
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
417
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
418
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
419
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
420
421
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
422
    if len(all_models) > 0:
423
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
424
425
426
427
428
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
429
430
431
432
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
433
    """Check models defined in module are tested in test_file."""
434
    # XxxPreTrainedModel are not tested
435
436
437
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
438
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
458
    """Check all models are properly tested."""
459
460
461
462
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
463
464
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
465
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
466
467
468
469
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
470
471
472
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
473
474
475
476
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


477
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
478
    """Return the list of all models in at least one auto class."""
479
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
480
481
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
482
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
483
484
485
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
486
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
487
488
489
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
490
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
491
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
492
    return [cls for cls in result]
493
494


495
496
497
498
499
500
501
502
503
504
505
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


506
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
507
    """Check models defined in module are each in an auto class."""
508
509
510
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
511
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
512
513
514
515
516
517
518
519
520
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
521
    """Check all models are each in an auto class."""
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
543
544
545
546
547
548
549
550
551
552
553
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
554
555
556
557
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
558
    """Check that in the test file `filename` the slow decorator is always last."""
559
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
576
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580
581
582
583
584
585
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
588
589
590
        )


591
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
592
    """Parse the content of all doc files to detect which classes and functions it documents"""
593
594
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
595
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
596
597
598
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
599
600
601
602
603
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
604
605
606
607
608
609
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
610
    "BartPretrainedModel",
611
612
    "DataCollator",
    "DataCollatorForSOP",
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
628
    "TFBartPretrainedModel",
629
630
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
631
    "Wav2Vec2ForMaskedLM",
632
    "Wav2Vec2Tokenizer",
633
634
635
636
637
638
639
640
641
642
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
643
644
    "TFTrainer",
    "TFTrainingArguments",
645
646
647
648
649
650
651
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
652
    "CharacterTokenizer",  # Internal, should never have been in the main init.
653
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
654
    "DummyObject",  # Just picked by mistake sometimes.
655
    "MecabTokenizer",  # Internal, should never have been in the main init.
656
657
658
659
660
661
662
663
664
665
666
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
667
    "requires_backends",  # Internal function
668
669
670
671
672
673
674
675
676
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
NielsRogge's avatar
NielsRogge committed
677
    "BitBackbone",
678
    "MaskFormerSwinBackbone",
679
680
    "ResNetBackbone",
    "AutoBackbone",
681
682
    "DinatBackbone",
    "NatBackbone",
683
684
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
685
    "SwinBackbone",
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
728
    """Check all models are properly documented."""
729
    documented_objs = find_all_documented_objects()
730
731
732
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
733
734
735
736
737
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
738
    check_docstrings_are_in_md()
739
740
741
742
743
744
745
746
747
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
748
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
794
        with open(file, encoding="utf-8") as f:
795
796
797
798
799
800
801
802
803
804
805
806
807
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
808
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
809
810
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
811
812


813
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
814
    """Check all models are properly tested and documented."""
815
816
    print("Checking all models are included.")
    check_model_list()
817
818
    print("Checking all models are public.")
    check_models_are_in_init()
819
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
820
    check_all_decorator_order()
821
    check_all_models_are_tested()
822
    print("Checking all objects are properly documented.")
823
    check_all_objects_are_documented()
824
825
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
826
827
828
829


if __name__ == "__main__":
    check_repo_quality()