check_repo.py 24.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from pathlib import Path
22

23
24
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
25
26
from transformers.models.auto import get_values

27
28
29
30
31

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
32
PATH_TO_DOC = "docs/source"
33

34
35
36
37
38
39
40
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
    "T5Stack",
    "TFDPRSpanPredictor",
]

41
42
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
43
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
44
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
45
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
46
47
48
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
49
50
51
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
52
53
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
54
55
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
56
57
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
58
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
59
    "BartEncoder",  # Building part of bigger (tested) model.
60
    "BertLMHeadModel",  # Needs to be setup as decoder.
61
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
62
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
63
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
64
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
65
    "MBartEncoder",  # Building part of bigger (tested) model.
66
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
67
68
69
70
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
71
    "PegasusEncoder",  # Building part of bigger (tested) model.
72
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
73
    "DPREncoder",  # Building part of bigger (tested) model.
74
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
75
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
76
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
77
    "TFDPREncoder",  # Building part of bigger (tested) model.
78
79
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
80
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
81
    "SeparableConv1D",  # Building part of bigger (tested) model.
82
83
84
85
86
87
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
88
    "test_modeling_flax_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
89
    "test_modeling_mbart.py",
Patrick von Platen's avatar
Patrick von Platen committed
90
    "test_modeling_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
91
    "test_modeling_pegasus.py",
92
    "test_modeling_tf_camembert.py",
Sylvain Gugger's avatar
Sylvain Gugger committed
93
    "test_modeling_tf_mt5.py",
94
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
95
    "test_modeling_xlm_prophetnet.py",
96
    "test_modeling_xlm_roberta.py",
Suraj Patil's avatar
Suraj Patil committed
97
98
    "test_modeling_vision_text_dual_encoder.py",
    "test_modeling_flax_vision_text_dual_encoder.py",
99
100
]

101
102
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
103
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
104
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
105
106
    "SegformerDecodeHead",
    "SegformerForSemanticSegmentation",
107
    "BeitForSemanticSegmentation",
Kamal Raj's avatar
Kamal Raj committed
108
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
109
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
110
111
    "CLIPTextModel",
    "CLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
112
113
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
114
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
115
    "DetrForSegmentation",
116
117
118
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
119
120
121
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
122
123
124
125
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
126
    "TFDPRReader",
127
128
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
129
130
131
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
132
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
133
    "HubertForCTC",
134
135
    "SEWForCTC",
    "SEWDForCTC",
136
137
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
138
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
139
140
141
142
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
143
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
144
    "TFHubertForCTC",
145
146
]

147
148
149
150
151
152
153
154
155
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


176
177
178
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
179
    """Get the model modules inside the transformers library."""
180
181
182
183
184
185
186
187
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
188
        "modeling_flax_auto",
189
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
190
        "modeling_flax_utils",
191
        "modeling_speech_encoder_decoder",
192
        "modeling_flax_vision_encoder_decoder",
193
194
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
195
        "modeling_tf_encoder_decoder",
196
197
198
199
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
200
        "modeling_vision_encoder_decoder",
201
202
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
203
204
205
206
207
208
209
210
211
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
212
213
214
    return modules


215
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
216
    """Get the objects in module that are models."""
217
    models = []
218
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
219
    for attr_name in dir(module):
220
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
221
222
223
224
225
226
227
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


258
259
260
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
261
    """Get the model test files."""
262
263
264
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
265
        "test_modeling_flax_encoder_decoder",
266
267
        "test_modeling_marian",
        "test_modeling_tf_common",
268
        "test_modeling_tf_encoder_decoder",
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
284
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
285
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
286
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
287
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
288
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
289
290
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
291
    if len(all_models) > 0:
292
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
293
294
295
296
297
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
298
299
300
301
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
302
    """Check models defined in module are tested in test_file."""
303
    # XxxPreTrainedModel are not tested
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
327
    """Check all models are properly tested."""
328
329
330
331
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
332
        test_file = f"test_{module.__name__.split('.')[-1]}.py"
333
334
335
336
337
338
339
340
341
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


342
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
343
    """Return the list of all models in at least one auto class."""
344
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
345
346
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
347
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
348
349
350
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
351
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
352
353
354
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
355
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
356
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
357
    return [cls for cls in result]
358
359


360
361
362
363
364
365
366
367
368
369
370
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


371
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
372
    """Check models defined in module are each in an auto class."""
373
374
375
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
376
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
377
378
379
380
381
382
383
384
385
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
386
    """Check all models are each in an auto class."""
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
408
409
410
411
412
413
414
415
416
417
418
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
419
420
421
422
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
423
    """Check that in the test file `filename` the slow decorator is always last."""
424
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
441
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
442
443
444
445
446
447
448
449
450
451
452
453
454
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


455
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
456
    """Parse the content of all doc files to detect which classes and functions it documents"""
457
458
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
459
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
460
461
462
463
464
465
466
467
468
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
469
    "BartPretrainedModel",
470
471
    "DataCollator",
    "DataCollatorForSOP",
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
487
    "TFBartPretrainedModel",
488
489
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
490
    "Wav2Vec2ForMaskedLM",
491
    "Wav2Vec2Tokenizer",
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
509
    "CharacterTokenizer",  # Internal, should never have been in the main init.
510
    "DPRPretrainedReader",  # Like an Encoder.
511
    "MecabTokenizer",  # Internal, should never have been in the main init.
512
513
514
515
516
517
518
519
520
521
522
523
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
524
    "requires_backends",  # Internal function
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
576
    """Check all models are properly documented."""
577
    documented_objs = find_all_documented_objects()
578
579
580
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
581
582
583
584
585
586
587
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )


588
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
589
    """Check all models are properly tested and documented."""
590
591
    print("Checking all models are included.")
    check_model_list()
592
593
    print("Checking all models are public.")
    check_models_are_in_init()
594
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
595
    check_all_decorator_order()
596
    check_all_models_are_tested()
597
    print("Checking all objects are properly documented.")
598
    check_all_objects_are_documented()
599
600
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
601
602
603
604


if __name__ == "__main__":
    check_repo_quality()