check_repo.py 35.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
26
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
27

28
29
30
31
32

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
33
PATH_TO_DOC = "docs/source/en"
34

35
36
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
37
    "AltRobertaModel",
38
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
    "T5Stack",
42
    "MT5Stack",
43
    "SwitchTransformersStack",
44
    "TFDPRSpanPredictor",
45
46
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
47
48
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
49
50
]

51
52
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
53
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
54
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
55
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
56
57
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
58
    "ErnieMForInformationExtraction",
59
60
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
61
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
62
63
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
64
65
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
66
67
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
68
69
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
70
    "OPTDecoder",  # Building part of bigger (tested) model.
71
72
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
73
74
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
75
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
76
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
77
78
79
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
80
81
82
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
83
84
85
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
86
87
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
88
89
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
90
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
91
92
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
93
94
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
95
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
96
    "BartEncoder",  # Building part of bigger (tested) model.
97
    "BertLMHeadModel",  # Needs to be setup as decoder.
98
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
99
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
100
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
101
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
102
    "MBartEncoder",  # Building part of bigger (tested) model.
103
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
104
105
106
107
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
108
109
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
110
    "PegasusEncoder",  # Building part of bigger (tested) model.
111
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
112
113
114
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
115
    "DPREncoder",  # Building part of bigger (tested) model.
116
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
117
118
119
120
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
121
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
122
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
123
    "TFDPREncoder",  # Building part of bigger (tested) model.
124
125
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
126
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
127
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
128
129
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
130
    "SeparableConv1D",  # Building part of bigger (tested) model.
131
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
132
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
133
    "OPTDecoderWrapper",
134
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
135
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
136
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
137
138
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
139
140
141
142
143
144
145
146
147
148
149
150
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
151
152
153
154
155
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
171
172
]

173
174
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
175
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
176
    # models to ignore for model xxx mapping
177
178
179
180
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
181
182
183
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
184
    "ErnieMForInformationExtraction",
185
    "GitVisionModel",
186
187
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
188
189
190
191
192
193
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
194
    "Swin2SRForImageSuperResolution",
195
196
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
197
198
199
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
200
    "EsmForProteinFolding",
201
    "GPTSanJapaneseModel",
202
    "TimeSeriesTransformerForPrediction",
203
204
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
205
206
207
208
209
210
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
211
    "DPTForDepthEstimation",
212
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
213
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
214
215
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
216
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
217
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
218
219
220
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
221
222
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
223
    "SegformerDecodeHead",
224
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
225
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
226
227
228
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
229
    "BeitForMaskedImageModeling",
230
231
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
232
    "CLIPTextModel",
233
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
234
    "CLIPVisionModel",
235
    "CLIPVisionModelWithProjection",
236
237
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
238
239
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
240
241
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
242
243
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
244
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
245
    "DetrForSegmentation",
246
    "ConditionalDetrForSegmentation",
247
248
    "DPRReader",
    "FlaubertForQuestionAnswering",
249
250
251
252
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
253
    "GPT2DoubleHeadsModel",
254
    "GPTSw3DoubleHeadsModel",
255
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
256
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
257
258
259
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
260
    "OpenAIGPTDoubleHeadsModel",
261
262
263
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
264
265
266
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
267
268
269
270
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
271
    "TFDPRReader",
272
    "TFGPT2DoubleHeadsModel",
273
    "TFLayoutLMForQuestionAnswering",
274
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
275
276
277
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
278
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
279
    "HubertForCTC",
280
281
    "SEWForCTC",
    "SEWDForCTC",
282
283
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
284
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
285
286
287
288
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
289
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
290
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
291
292
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
293
294
295
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
296
    "TvltForAudioVisualClassification",
297
298
299
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
300
301
]

302
303
304
305
306
307
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
308
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
309
        ("donut-swin", "donut"),
310
311
312
313
    ]
)


314
# This is to make sure the transformers module imported is the one in the repo.
315
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
316
317


318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


338
339
340
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
341
    """Get the model modules inside the transformers library."""
342
343
344
345
346
347
348
349
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
350
        "modeling_flax_auto",
351
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
352
        "modeling_flax_utils",
353
        "modeling_speech_encoder_decoder",
354
        "modeling_flax_speech_encoder_decoder",
355
        "modeling_flax_vision_encoder_decoder",
356
357
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
358
        "modeling_tf_encoder_decoder",
359
360
361
362
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
363
        "modeling_tf_vision_encoder_decoder",
364
        "modeling_vision_encoder_decoder",
365
366
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
367
368
369
370
371
372
373
374
375
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
376
377
378
    return modules


379
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
380
    """Get the objects in module that are models."""
381
    models = []
382
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
383
    for attr_name in dir(module):
384
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
385
386
387
388
389
390
391
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


392
393
394
395
396
397
398
399
400
401
402
403
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
404
405
    if model.endswith("Prenet"):
        return True
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


424
425
426
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
427
428
429
430
431
432
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

433
434
435
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
436
        "test_modeling_flax_encoder_decoder",
437
        "test_modeling_flax_speech_encoder_decoder",
438
439
        "test_modeling_marian",
        "test_modeling_tf_common",
440
        "test_modeling_tf_encoder_decoder",
441
442
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
443
444
445
446
447
448
449
450
451
452
453
454
455
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
456
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
457
458
459
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

460
461
462
463
464
465
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
466
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
467
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
468
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
469
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
470
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
471
472
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
473
    if len(all_models) > 0:
474
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
475
476
477
478
479
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
480
481
482
483
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
484
    """Check models defined in module are tested in test_file."""
485
    # XxxPreTrainedModel are not tested
486
487
488
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
489
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
509
    """Check all models are properly tested."""
510
511
512
513
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
514
515
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
516
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
517
518
519
520
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
521
522
523
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
524
525
526
527
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


528
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
529
    """Return the list of all models in at least one auto class."""
530
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
531
532
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
533
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
534
535
536
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
537
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
538
539
540
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
541
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
542
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
543
    return [cls for cls in result]
544
545


546
547
548
549
550
551
552
553
554
555
556
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


557
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
558
    """Check models defined in module are each in an auto class."""
559
560
561
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
562
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
563
564
565
566
567
568
569
570
571
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
572
    """Check all models are each in an auto class."""
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
594
595
596
597
598
599
600
601
602
603
604
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
605
606
607
608
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
609
    """Check that in the test file `filename` the slow decorator is always last."""
610
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
627
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
628
629
630
631
632
633
634
635
636
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
637
638
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
641
        )


642
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
643
    """Parse the content of all doc files to detect which classes and functions it documents"""
644
645
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
646
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
647
648
649
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
650
651
652
653
654
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
655
656
657
658
659
660
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
661
    "BartPretrainedModel",
662
663
    "DataCollator",
    "DataCollatorForSOP",
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
679
    "TFBartPretrainedModel",
680
681
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
682
    "Wav2Vec2ForMaskedLM",
683
    "Wav2Vec2Tokenizer",
684
685
686
687
688
689
690
691
692
693
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
694
695
    "TFTrainer",
    "TFTrainingArguments",
696
697
698
699
700
701
702
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
703
    "CharacterTokenizer",  # Internal, should never have been in the main init.
704
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
705
    "DummyObject",  # Just picked by mistake sometimes.
706
    "MecabTokenizer",  # Internal, should never have been in the main init.
707
708
709
710
711
712
713
714
715
716
717
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
718
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
719
    "AltRobertaModel",  # Internal module
720
721
722
723
724
725
726
727
728
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
729
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
730
731
    "BitBackbone",
    "ConvNextBackbone",
732
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
733
    "MaskFormerSwinBackbone",
734
735
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
736
737
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
738
    "SwinBackbone",
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
781
    """Check all models are properly documented."""
782
    documented_objs = find_all_documented_objects()
783
784
785
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
786
787
788
789
790
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
791
    check_docstrings_are_in_md()
792
793
794
795
796
797
798
799
800
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
801
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
847
        with open(file, encoding="utf-8") as f:
848
849
850
851
852
853
854
855
856
857
858
859
860
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
861
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
862
863
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
864
865


866
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
867
    """Check all models are properly tested and documented."""
868
869
    print("Checking all models are included.")
    check_model_list()
870
871
    print("Checking all models are public.")
    check_models_are_in_init()
872
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
873
    check_all_decorator_order()
874
    check_all_models_are_tested()
875
    print("Checking all objects are properly documented.")
876
    check_all_objects_are_documented()
877
878
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
879
880
881
882


if __name__ == "__main__":
    check_repo_quality()