check_repo.py 35.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
26
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
27

28
29
30
31
32

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
33
PATH_TO_DOC = "docs/source/en"
34

35
36
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
37
    "AltRobertaModel",
38
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
    "T5Stack",
42
    "MT5Stack",
43
    "SwitchTransformersStack",
44
    "TFDPRSpanPredictor",
45
46
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
47
48
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
49
50
]

51
52
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
53
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
54
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
55
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
56
57
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
58
    "ErnieMForInformationExtraction",
59
60
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
61
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
62
63
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
64
65
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
66
67
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
68
69
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
70
    "OPTDecoder",  # Building part of bigger (tested) model.
71
72
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
73
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
74
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
75
76
77
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
78
79
80
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
81
82
83
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
84
85
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
86
87
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
88
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
89
90
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
91
92
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
93
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
94
    "BartEncoder",  # Building part of bigger (tested) model.
95
    "BertLMHeadModel",  # Needs to be setup as decoder.
96
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
97
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
98
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
99
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
100
    "MBartEncoder",  # Building part of bigger (tested) model.
101
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
102
103
104
105
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
106
107
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
108
    "PegasusEncoder",  # Building part of bigger (tested) model.
109
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
110
111
112
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
113
    "DPREncoder",  # Building part of bigger (tested) model.
114
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
115
116
117
118
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
119
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
120
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
121
    "TFDPREncoder",  # Building part of bigger (tested) model.
122
123
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
124
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
125
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
126
127
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
128
    "SeparableConv1D",  # Building part of bigger (tested) model.
129
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
130
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
131
    "OPTDecoderWrapper",
132
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
133
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
134
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
135
136
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
137
138
139
140
141
142
143
144
145
146
147
148
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
149
150
151
152
153
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
169
170
]

171
172
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
173
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
174
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
175
176
177
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
178
    "ErnieMForInformationExtraction",
179
    "GitVisionModel",
180
181
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
182
183
184
185
186
187
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
188
    "Swin2SRForImageSuperResolution",
189
190
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
191
192
193
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
194
    "EsmForProteinFolding",
195
    "TimeSeriesTransformerForPrediction",
196
197
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
198
199
200
201
202
203
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
204
    "DPTForDepthEstimation",
205
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
206
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
207
208
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
209
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
210
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
211
212
213
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
214
215
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
216
    "SegformerDecodeHead",
217
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
218
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
219
220
221
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
222
    "BeitForMaskedImageModeling",
223
224
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
225
    "CLIPTextModel",
226
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
227
    "CLIPVisionModel",
228
    "CLIPVisionModelWithProjection",
229
230
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
231
232
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
233
234
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
235
236
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
237
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
238
    "DetrForSegmentation",
239
    "ConditionalDetrForSegmentation",
240
241
    "DPRReader",
    "FlaubertForQuestionAnswering",
242
243
244
245
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
246
    "GPT2DoubleHeadsModel",
247
    "GPTSw3DoubleHeadsModel",
248
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
249
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
250
251
252
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
253
    "OpenAIGPTDoubleHeadsModel",
254
255
256
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
257
258
259
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
260
261
262
263
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
264
    "TFDPRReader",
265
    "TFGPT2DoubleHeadsModel",
266
    "TFLayoutLMForQuestionAnswering",
267
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
268
269
270
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
271
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
272
    "HubertForCTC",
273
274
    "SEWForCTC",
    "SEWDForCTC",
275
276
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
277
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
278
279
280
281
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
282
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
283
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
284
285
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
286
287
288
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
289
    "TvltForAudioVisualClassification",
290
291
292
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
293
294
]

295
296
297
298
299
300
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
301
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
302
        ("donut-swin", "donut"),
303
304
305
306
    ]
)


307
# This is to make sure the transformers module imported is the one in the repo.
308
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
309
310


311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


331
332
333
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
334
    """Get the model modules inside the transformers library."""
335
336
337
338
339
340
341
342
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
343
        "modeling_flax_auto",
344
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
345
        "modeling_flax_utils",
346
        "modeling_speech_encoder_decoder",
347
        "modeling_flax_speech_encoder_decoder",
348
        "modeling_flax_vision_encoder_decoder",
349
350
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
351
        "modeling_tf_encoder_decoder",
352
353
354
355
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
356
        "modeling_tf_vision_encoder_decoder",
357
        "modeling_vision_encoder_decoder",
358
359
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
360
361
362
363
364
365
366
367
368
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
369
370
371
    return modules


372
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
373
    """Get the objects in module that are models."""
374
    models = []
375
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
376
    for attr_name in dir(module):
377
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
378
379
380
381
382
383
384
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


385
386
387
388
389
390
391
392
393
394
395
396
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
397
398
    if model.endswith("Prenet"):
        return True
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


417
418
419
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
420
421
422
423
424
425
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

426
427
428
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
429
        "test_modeling_flax_encoder_decoder",
430
        "test_modeling_flax_speech_encoder_decoder",
431
432
        "test_modeling_marian",
        "test_modeling_tf_common",
433
        "test_modeling_tf_encoder_decoder",
434
435
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
436
437
438
439
440
441
442
443
444
445
446
447
448
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
449
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
450
451
452
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

453
454
455
456
457
458
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
459
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
460
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
461
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
462
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
463
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
464
465
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
466
    if len(all_models) > 0:
467
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
468
469
470
471
472
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
473
474
475
476
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
477
    """Check models defined in module are tested in test_file."""
478
    # XxxPreTrainedModel are not tested
479
480
481
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
482
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
502
    """Check all models are properly tested."""
503
504
505
506
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
507
508
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
509
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
510
511
512
513
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
514
515
516
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
517
518
519
520
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


521
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
522
    """Return the list of all models in at least one auto class."""
523
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
524
525
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
526
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
527
528
529
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
530
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
531
532
533
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
534
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
535
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
536
    return [cls for cls in result]
537
538


539
540
541
542
543
544
545
546
547
548
549
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


550
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
551
    """Check models defined in module are each in an auto class."""
552
553
554
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
555
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
556
557
558
559
560
561
562
563
564
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
565
    """Check all models are each in an auto class."""
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
587
588
589
590
591
592
593
594
595
596
597
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
598
599
600
601
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
602
    """Check that in the test file `filename` the slow decorator is always last."""
603
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
620
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
621
622
623
624
625
626
627
628
629
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
630
631
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
632
633
634
        )


635
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
636
    """Parse the content of all doc files to detect which classes and functions it documents"""
637
638
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
639
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
640
641
642
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
643
644
645
646
647
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
648
649
650
651
652
653
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
654
    "BartPretrainedModel",
655
656
    "DataCollator",
    "DataCollatorForSOP",
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
672
    "TFBartPretrainedModel",
673
674
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
675
    "Wav2Vec2ForMaskedLM",
676
    "Wav2Vec2Tokenizer",
677
678
679
680
681
682
683
684
685
686
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
687
688
    "TFTrainer",
    "TFTrainingArguments",
689
690
691
692
693
694
695
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
696
    "CharacterTokenizer",  # Internal, should never have been in the main init.
697
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
698
    "DummyObject",  # Just picked by mistake sometimes.
699
    "MecabTokenizer",  # Internal, should never have been in the main init.
700
701
702
703
704
705
706
707
708
709
710
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
711
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
712
    "AltRobertaModel",  # Internal module
713
714
715
716
717
718
719
720
721
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
722
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
723
724
    "BitBackbone",
    "ConvNextBackbone",
725
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
726
    "MaskFormerSwinBackbone",
727
728
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
729
730
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
731
    "SwinBackbone",
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
774
    """Check all models are properly documented."""
775
    documented_objs = find_all_documented_objects()
776
777
778
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
779
780
781
782
783
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
784
    check_docstrings_are_in_md()
785
786
787
788
789
790
791
792
793
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
794
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
840
        with open(file, encoding="utf-8") as f:
841
842
843
844
845
846
847
848
849
850
851
852
853
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
854
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
855
856
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
857
858


859
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
860
    """Check all models are properly tested and documented."""
861
862
    print("Checking all models are included.")
    check_model_list()
863
864
    print("Checking all models are public.")
    check_models_are_in_init()
865
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
866
    check_all_decorator_order()
867
    check_all_models_are_tested()
868
    print("Checking all objects are properly documented.")
869
    check_all_objects_are_documented()
870
871
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
872
873
874
875


if __name__ == "__main__":
    check_repo_quality()