check_repo.py 35.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import sys
21
import warnings
22
from collections import OrderedDict
23
from difflib import get_close_matches
24
from pathlib import Path
25

26
from transformers import is_flax_available, is_tf_available, is_torch_available
27
from transformers.models.auto import get_values
28
from transformers.utils import ENV_VARS_TRUE_VALUES
29

30
31
32
33
34

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
35
PATH_TO_DOC = "docs/source/en"
36

37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
39
    "AltRobertaModel",
40
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
41
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
42
    "RealmBertModel",
43
    "T5Stack",
44
    "MT5Stack",
45
    "SwitchTransformersStack",
46
    "TFDPRSpanPredictor",
47
48
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
49
50
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
51
52
]

53
54
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
55
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
56
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
57
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
58
59
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
60
    "ErnieMForInformationExtraction",
61
62
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
63
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
64
65
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
66
67
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
68
69
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
70
71
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
72
    "OPTDecoder",  # Building part of bigger (tested) model.
73
74
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
75
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
76
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
77
78
79
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
80
81
82
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
83
84
85
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
86
87
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
88
89
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
90
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
91
92
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
93
94
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
95
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
96
    "BartEncoder",  # Building part of bigger (tested) model.
97
    "BertLMHeadModel",  # Needs to be setup as decoder.
98
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
99
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
100
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
101
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
102
    "MBartEncoder",  # Building part of bigger (tested) model.
103
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
104
105
106
107
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
108
109
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
110
    "PegasusEncoder",  # Building part of bigger (tested) model.
111
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
112
113
114
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
115
    "DPREncoder",  # Building part of bigger (tested) model.
116
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
117
118
119
120
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
121
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
122
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
123
    "TFDPREncoder",  # Building part of bigger (tested) model.
124
125
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
126
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
127
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
128
129
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
130
    "SeparableConv1D",  # Building part of bigger (tested) model.
131
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
132
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
133
    "OPTDecoderWrapper",
134
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
135
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
136
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
137
138
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
139
140
141
142
143
144
145
146
147
148
149
150
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
151
152
153
154
155
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
171
172
]

173
174
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
175
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
176
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
177
178
179
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
180
    "ErnieMForInformationExtraction",
181
    "GitVisionModel",
182
183
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
184
185
186
187
188
189
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
190
    "Swin2SRForImageSuperResolution",
191
192
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
193
194
195
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
196
    "EsmForProteinFolding",
197
    "TimeSeriesTransformerForPrediction",
198
199
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
200
201
202
203
204
205
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
206
    "DPTForDepthEstimation",
207
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
208
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
209
210
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
211
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
212
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
213
214
215
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
216
217
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
218
    "SegformerDecodeHead",
219
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
220
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
221
222
223
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
224
    "BeitForMaskedImageModeling",
225
226
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
227
    "CLIPTextModel",
228
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
229
    "CLIPVisionModel",
230
    "CLIPVisionModelWithProjection",
231
232
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
233
234
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
235
236
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
237
238
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
239
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
240
    "DetrForSegmentation",
241
    "ConditionalDetrForSegmentation",
242
243
    "DPRReader",
    "FlaubertForQuestionAnswering",
244
245
246
247
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
248
    "GPT2DoubleHeadsModel",
249
    "GPTSw3DoubleHeadsModel",
250
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
251
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
252
253
254
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
255
    "OpenAIGPTDoubleHeadsModel",
256
257
258
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
259
260
261
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
262
263
264
265
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
266
    "TFDPRReader",
267
    "TFGPT2DoubleHeadsModel",
268
    "TFLayoutLMForQuestionAnswering",
269
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
270
271
272
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
273
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
274
    "HubertForCTC",
275
276
    "SEWForCTC",
    "SEWDForCTC",
277
278
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
279
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
280
281
282
283
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
284
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
285
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
286
287
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
288
289
290
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
291
    "TvltForAudioVisualClassification",
292
293
294
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
295
296
]

297
298
299
300
301
302
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
303
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
304
        ("donut-swin", "donut"),
305
306
307
308
    ]
)


309
310
311
312
313
314
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
315
316
317
transformers = importlib.util.module_from_spec(spec)
spec.loader.exec_module(transformers)
transformers = sys.modules["transformers"]
318
319


320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


340
341
342
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
343
    """Get the model modules inside the transformers library."""
344
345
346
347
348
349
350
351
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
352
        "modeling_flax_auto",
353
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
354
        "modeling_flax_utils",
355
        "modeling_speech_encoder_decoder",
356
        "modeling_flax_speech_encoder_decoder",
357
        "modeling_flax_vision_encoder_decoder",
358
359
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
360
        "modeling_tf_encoder_decoder",
361
362
363
364
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
365
        "modeling_tf_vision_encoder_decoder",
366
        "modeling_vision_encoder_decoder",
367
368
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371
372
373
374
375
376
377
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
378
379
380
    return modules


381
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
382
    """Get the objects in module that are models."""
383
    models = []
384
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
385
    for attr_name in dir(module):
386
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
387
388
389
390
391
392
393
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


394
395
396
397
398
399
400
401
402
403
404
405
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
406
407
    if model.endswith("Prenet"):
        return True
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


426
427
428
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
429
430
431
432
433
434
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

435
436
437
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
438
        "test_modeling_flax_encoder_decoder",
439
        "test_modeling_flax_speech_encoder_decoder",
440
441
        "test_modeling_marian",
        "test_modeling_tf_common",
442
        "test_modeling_tf_encoder_decoder",
443
444
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
445
446
447
448
449
450
451
452
453
454
455
456
457
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
458
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
459
460
461
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

462
463
464
465
466
467
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
468
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
469
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
470
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
471
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
472
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
473
474
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
475
    if len(all_models) > 0:
476
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
477
478
479
480
481
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
482
483
484
485
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
486
    """Check models defined in module are tested in test_file."""
487
    # XxxPreTrainedModel are not tested
488
489
490
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
491
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
511
    """Check all models are properly tested."""
512
513
514
515
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
516
517
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
518
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
519
520
521
522
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
523
524
525
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
526
527
528
529
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


530
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
531
    """Return the list of all models in at least one auto class."""
532
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
533
534
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
535
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
536
537
538
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
539
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
540
541
542
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
543
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
544
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
545
    return [cls for cls in result]
546
547


548
549
550
551
552
553
554
555
556
557
558
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


559
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
560
    """Check models defined in module are each in an auto class."""
561
562
563
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
564
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
565
566
567
568
569
570
571
572
573
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
574
    """Check all models are each in an auto class."""
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
596
597
598
599
600
601
602
603
604
605
606
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
607
608
609
610
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
611
    """Check that in the test file `filename` the slow decorator is always last."""
612
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
629
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
630
631
632
633
634
635
636
637
638
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
641
642
643
        )


644
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
645
    """Parse the content of all doc files to detect which classes and functions it documents"""
646
647
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
648
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
649
650
651
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
652
653
654
655
656
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
657
658
659
660
661
662
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
663
    "BartPretrainedModel",
664
665
    "DataCollator",
    "DataCollatorForSOP",
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
681
    "TFBartPretrainedModel",
682
683
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
684
    "Wav2Vec2ForMaskedLM",
685
    "Wav2Vec2Tokenizer",
686
687
688
689
690
691
692
693
694
695
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
696
697
    "TFTrainer",
    "TFTrainingArguments",
698
699
700
701
702
703
704
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
705
    "CharacterTokenizer",  # Internal, should never have been in the main init.
706
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
707
    "DummyObject",  # Just picked by mistake sometimes.
708
    "MecabTokenizer",  # Internal, should never have been in the main init.
709
710
711
712
713
714
715
716
717
718
719
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
720
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
721
    "AltRobertaModel",  # Internal module
722
723
724
725
726
727
728
729
730
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
731
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
732
733
    "BitBackbone",
    "ConvNextBackbone",
734
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
735
    "MaskFormerSwinBackbone",
736
737
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
738
739
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
740
    "SwinBackbone",
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
783
    """Check all models are properly documented."""
784
    documented_objs = find_all_documented_objects()
785
786
787
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
788
789
790
791
792
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
793
    check_docstrings_are_in_md()
794
795
796
797
798
799
800
801
802
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
803
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
849
        with open(file, encoding="utf-8") as f:
850
851
852
853
854
855
856
857
858
859
860
861
862
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
863
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
864
865
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
866
867


868
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
869
    """Check all models are properly tested and documented."""
870
871
    print("Checking all models are included.")
    check_model_list()
872
873
    print("Checking all models are public.")
    check_models_are_in_init()
874
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
875
    check_all_decorator_order()
876
    check_all_models_are_tested()
877
    print("Checking all objects are properly documented.")
878
    check_all_objects_are_documented()
879
880
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
881
882
883
884


if __name__ == "__main__":
    check_repo_quality()