check_repo.py 40.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
27
28
29
30
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
31
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
32

33
34
35
36
37

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
38
PATH_TO_DOC = "docs/source/en"
39

40
41
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
42
    "AltRobertaModel",
43
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
44
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
45
    "RealmBertModel",
46
    "T5Stack",
47
    "MT5Stack",
48
    "SwitchTransformersStack",
49
    "TFDPRSpanPredictor",
50
51
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
52
53
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
54
55
]

56
57
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
58
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
59
    # models to ignore for not tested
60
61
    "NllbMoeDecoder",
    "NllbMoeEncoder",
Jason Phang's avatar
Jason Phang committed
62
    "LlamaDecoder",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
63
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
64
65
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
66
    "ErnieMForInformationExtraction",
67
68
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
69
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
70
71
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
72
73
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
74
75
    "InformerEncoder",  # Building part of bigger (tested) model.
    "InformerDecoder",  # Building part of bigger (tested) model.
76
77
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
78
79
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
80
    "OPTDecoder",  # Building part of bigger (tested) model.
81
82
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
83
84
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
85
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
86
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
87
88
89
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
90
91
92
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
93
94
95
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
96
97
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
98
99
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
100
    "MCTCTEncoder",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
101
    "MgpstrModel",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
102
103
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
104
105
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
106
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
107
    "BartEncoder",  # Building part of bigger (tested) model.
108
    "BertLMHeadModel",  # Needs to be setup as decoder.
109
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
110
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
111
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
112
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
113
    "MBartEncoder",  # Building part of bigger (tested) model.
114
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
115
116
117
118
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
119
120
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
121
    "PegasusEncoder",  # Building part of bigger (tested) model.
122
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
123
124
125
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
126
    "DPREncoder",  # Building part of bigger (tested) model.
127
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
128
129
130
131
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
132
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
133
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
134
    "TFDPREncoder",  # Building part of bigger (tested) model.
135
136
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
137
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
138
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
139
140
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
141
    "SeparableConv1D",  # Building part of bigger (tested) model.
142
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
143
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
144
    "OPTDecoderWrapper",
145
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
146
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
147
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
148
149
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
150
151
152
153
154
155
156
157
158
159
160
161
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
162
163
164
165
166
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
167
168
169
170
171
172
173
174
175
176
177
178
179
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
180
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
181
182
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
183
184
]

185
186
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
187
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
188
    # models to ignore for model xxx mapping
189
190
    "AlignTextModel",
    "AlignVisionModel",
191
192
193
194
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
195
196
197
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
198
    "ErnieMForInformationExtraction",
199
    "GitVisionModel",
200
201
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
202
203
204
205
206
207
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
208
    "Swin2SRForImageSuperResolution",
209
210
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
211
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
212
213
214
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
215
    "EsmForProteinFolding",
216
    "GPTSanJapaneseModel",
217
    "TimeSeriesTransformerForPrediction",
218
    "InformerForPrediction",
219
220
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
221
222
223
224
225
226
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
227
    "DPTForDepthEstimation",
228
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
229
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
230
231
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
232
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
233
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
234
235
236
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
237
238
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
239
    "SegformerDecodeHead",
240
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
241
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
242
243
244
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
245
    "BeitForMaskedImageModeling",
246
247
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
248
    "CLIPTextModel",
249
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
250
    "CLIPVisionModel",
251
    "CLIPVisionModelWithProjection",
252
253
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
254
255
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
256
257
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
258
259
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
260
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
261
    "DetrForSegmentation",
Younes Belkada's avatar
Younes Belkada committed
262
263
264
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
265
    "ConditionalDetrForSegmentation",
266
267
    "DPRReader",
    "FlaubertForQuestionAnswering",
268
269
270
271
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
272
    "GPT2DoubleHeadsModel",
273
    "GPTSw3DoubleHeadsModel",
274
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
275
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
276
277
278
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
279
    "MgpstrModel",
280
    "OpenAIGPTDoubleHeadsModel",
281
282
283
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
284
285
286
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
287
288
289
290
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
291
    "TFDPRReader",
292
    "TFGPT2DoubleHeadsModel",
293
    "TFLayoutLMForQuestionAnswering",
294
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
295
296
297
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
298
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
299
    "HubertForCTC",
300
301
    "SEWForCTC",
    "SEWDForCTC",
302
303
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
304
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
305
306
307
308
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
309
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
310
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
311
312
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
313
314
315
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
316
    "TvltForAudioVisualClassification",
317
318
319
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
320
321
]

322
323
324
325
326
327
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
328
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
329
        ("donut-swin", "donut"),
330
331
332
333
    ]
)


334
# This is to make sure the transformers module imported is the one in the repo.
335
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
336
337


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
def check_missing_backends():
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


362
363
364
365
366
367
368
369
370
371
372
373
374
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

375
    missing_models = sorted(set(_models).difference(models))
376
377
378
379
380
381
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


382
383
384
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
385
    """Get the model modules inside the transformers library."""
386
387
388
389
390
391
392
393
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
394
        "modeling_flax_auto",
395
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
396
        "modeling_flax_utils",
397
        "modeling_speech_encoder_decoder",
398
        "modeling_flax_speech_encoder_decoder",
399
        "modeling_flax_vision_encoder_decoder",
400
401
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
402
        "modeling_tf_encoder_decoder",
403
404
405
406
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
407
        "modeling_tf_vision_encoder_decoder",
408
        "modeling_vision_encoder_decoder",
409
410
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
411
412
413
414
415
416
417
418
419
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
420
421
422
    return modules


423
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
424
    """Get the objects in module that are models."""
425
    models = []
426
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
427
    for attr_name in dir(module):
428
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
429
430
431
432
433
434
435
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


436
437
438
439
440
441
442
443
444
445
446
447
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
448
449
    if model.endswith("Prenet"):
        return True
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


468
469
470
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
471
472
473
474
475
476
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

477
478
479
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
480
        "test_modeling_flax_encoder_decoder",
481
        "test_modeling_flax_speech_encoder_decoder",
482
483
        "test_modeling_marian",
        "test_modeling_tf_common",
484
        "test_modeling_tf_encoder_decoder",
485
486
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
487
488
489
490
491
492
493
494
495
496
497
498
499
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
500
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
501
502
503
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

504
505
506
507
508
509
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
510
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
511
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
512
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
513
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
514
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
515
516
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
517
    if len(all_models) > 0:
518
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
519
520
521
522
523
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
524
525
526
527
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
528
    """Check models defined in module are tested in test_file."""
529
    # XxxPreTrainedModel are not tested
530
531
532
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
533
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
553
    """Check all models are properly tested."""
554
555
556
557
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
558
559
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
560
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
561
562
563
564
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
565
566
567
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
568
569
570
571
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


572
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
573
    """Return the list of all models in at least one auto class."""
574
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
575
576
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
577
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
578
579
580
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
581
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
582
583
584
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
585
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
586
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
587
    return list(result)
588
589


590
591
592
593
594
595
596
597
598
599
600
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


601
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
602
    """Check models defined in module are each in an auto class."""
603
604
605
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
606
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
607
608
609
610
611
612
613
614
615
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
616
    """Check all models are each in an auto class."""
617
    check_missing_backends()
618
619
620
621
622
623
624
625
626
627
628
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


629
630
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
631
    check_missing_backends()
632

633
    failures = []
634
    mappings_to_check = {
635
636
637
638
639
640
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

641
642
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
643
644
645
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
646
647
648
649
650
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
670
671
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
672
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
673

674
    failures = []
Yih-Dar's avatar
Yih-Dar committed
675
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
676
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
677
678
679
680
681
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

682
683
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
684
685
686
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
687
688
689
690
691
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Yih-Dar's avatar
Yih-Dar committed
692
693
694
695
696
697
698
699
700
701
        for model_type, class_names in mapping.items():
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
702
703
704
705
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
706
    """Check that in the test file `filename` the slow decorator is always last."""
707
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
724
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
725
726
727
728
729
730
731
732
733
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
734
735
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
736
737
738
        )


739
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
740
    """Parse the content of all doc files to detect which classes and functions it documents"""
741
742
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
743
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
744
745
746
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
747
748
749
750
751
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
752
753
754
755
756
757
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
758
    "BartPretrainedModel",
759
760
    "DataCollator",
    "DataCollatorForSOP",
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
776
    "TFBartPretrainedModel",
777
778
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
779
    "Wav2Vec2ForMaskedLM",
780
    "Wav2Vec2Tokenizer",
781
782
783
784
785
786
787
788
789
790
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
791
792
    "TFTrainer",
    "TFTrainingArguments",
793
794
795
796
797
798
799
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
800
    "CharacterTokenizer",  # Internal, should never have been in the main init.
801
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
802
    "DummyObject",  # Just picked by mistake sometimes.
803
    "MecabTokenizer",  # Internal, should never have been in the main init.
804
805
806
807
808
809
810
811
812
813
814
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
815
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
816
    "AltRobertaModel",  # Internal module
817
818
819
820
821
822
823
824
825
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
826
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
827
828
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
829
    "ConvNextV2Backbone",
830
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
831
    "MaskFormerSwinBackbone",
832
833
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
834
835
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
836
    "SwinBackbone",
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
879
    """Check all models are properly documented."""
880
    documented_objs = find_all_documented_objects()
881
882
883
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
884
885
886
887
888
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
889
    check_docstrings_are_in_md()
890
891
892
893
894
895
896
897
898
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
899
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
945
        with open(file, encoding="utf-8") as f:
946
947
948
949
950
951
952
953
954
955
956
957
958
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
959
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
960
961
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
962
963


964
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
965
    """Check all models are properly tested and documented."""
966
967
    print("Checking all models are included.")
    check_model_list()
968
969
    print("Checking all models are public.")
    check_models_are_in_init()
970
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
971
    check_all_decorator_order()
972
    check_all_models_are_tested()
973
    print("Checking all objects are properly documented.")
974
    check_all_objects_are_documented()
975
976
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
977
978
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
979
980
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
981
982
983
984


if __name__ == "__main__":
    check_repo_quality()