check_repo.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
from pathlib import Path
21
22
23
24
25
26
27
28
29
30
31


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
PATH_TO_DOC = "docs/source/model_doc"

# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = [
32
33
    "BartDecoder",  # Building part of bigger (tested) model.
    "BartEncoder",  # Building part of bigger (tested) model.
34
35
36
    "BertLMHeadModel",  # Needs to be setup as decoder.
    "DPREncoder",  # Building part of bigger (tested) model.
    "DPRSpanPredictor",  # Building part of bigger (tested) model.
37
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
38
39
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
    "T5Stack",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
40
41
    "TFDPREncoder",  # Building part of bigger (tested) model.
    "TFDPRSpanPredictor",  # Building part of bigger (tested) model.
42
43
44
45
46
47
48
49
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
Stas Bekman's avatar
Stas Bekman committed
50
51
52
    "test_modeling_flax_bert.py",
    "test_modeling_flax_roberta.py",
    "test_modeling_mbart.py",
Patrick von Platen's avatar
Patrick von Platen committed
53
    "test_modeling_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
54
    "test_modeling_pegasus.py",
55
    "test_modeling_tf_camembert.py",
Sylvain Gugger's avatar
Sylvain Gugger committed
56
    "test_modeling_tf_mt5.py",
57
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
58
    "test_modeling_xlm_prophetnet.py",
59
60
61
    "test_modeling_xlm_roberta.py",
]

62
63
64
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = [
65
66
    "BartDecoder",
    "BartEncoder",
67
68
69
70
71
72
73
    "DPRContextEncoder",
    "DPREncoder",
    "DPRReader",
    "DPRSpanPredictor",
    "FlaubertForQuestionAnswering",
    "FunnelBaseModel",
    "GPT2DoubleHeadsModel",
74
    "MT5EncoderModel",
75
76
77
    "OpenAIGPTDoubleHeadsModel",
    "ProphetNetDecoder",
    "ProphetNetEncoder",
78
    "ProphetNetDecoderWrapper",
79
80
81
82
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
    "T5Stack",
83
    "T5EncoderModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
84
85
86
87
    "TFDPRContextEncoder",
    "TFDPREncoder",
    "TFDPRReader",
    "TFDPRSpanPredictor",
88
89
    "TFFunnelBaseModel",
    "TFGPT2DoubleHeadsModel",
90
    "TFMT5EncoderModel",
91
    "TFOpenAIGPTDoubleHeadsModel",
92
    "TFT5EncoderModel",
93
94
95
96
97
98
    "XLMForQuestionAnswering",
    "XLMProphetNetDecoder",
    "XLMProphetNetEncoder",
    "XLNetForQuestionAnswering",
]

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
    """ Get the model modules inside the transformers library. """
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
120
        "modeling_flax_auto",
Stas Bekman's avatar
Stas Bekman committed
121
        "modeling_flax_utils",
122
123
124
125
126
127
128
129
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
132
133
134
135
136
137
138
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    return modules


def get_models(module):
    """ Get the objects in module that are models."""
    models = []
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel)
    for attr_name in dir(module):
        if "Pretrained" in attr_name or "PreTrained" in attr_name:
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
    """ Get the model test files."""
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
        "test_modeling_marian",
        "test_modeling_tf_common",
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
    """ Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
180
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
181
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
182
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
183
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
184
    # Check with one less parenthesis
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
    if len(all_models) == 0:
        all_models = re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
    if len(all_models) > 0:
188
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
193
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        return model_tested


def check_models_are_tested(module, test_file):
    """ Check models defined in module are tested in test_file."""
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
    """ Check all models are properly tested."""
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        test_file = f"test_{module.__name__.split('.')[-1]}.py"
228
229
230
231
232
233
234
235
236
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


237
238
239
def get_all_auto_configured_models():
    """ Return the list of all models in at least one auto class."""
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
Sylvain Gugger's avatar
Sylvain Gugger committed
240
    for attr_name in dir(transformers.models.auto.modeling_auto):
241
        if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING"):
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
            result = result | set(getattr(transformers.models.auto.modeling_auto, attr_name).values())
    for attr_name in dir(transformers.models.auto.modeling_tf_auto):
244
        if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING"):
Sylvain Gugger's avatar
Sylvain Gugger committed
245
            result = result | set(getattr(transformers.models.auto.modeling_tf_auto, attr_name).values())
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    return [cls.__name__ for cls in result]


def check_models_are_auto_configured(module, all_auto_models):
    """ Check models defined in module are each in an auto class."""
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
        if model_name not in all_auto_models and model_name not in IGNORE_NON_AUTO_CONFIGURED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
    """ Check all models are each in an auto class."""
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
276
277
278
279
280
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
    """ Check that in the test file `filename` the slow decorator is always last."""
281
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
    """ Check that in all test files, the slow decorator is always last."""
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def find_all_documented_objects():
    """ Parse the content of all doc files to detect which classes and functions it documents"""
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
        with open(doc_file) as f:
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
    "DPRPretrainedReader",  # Like an Encoder.
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # bert-japanese
    "BertJapaneseTokenizer",
    "CharacterTokenizer",
    "MecabTokenizer",
    # Bertweet
    "BertweetTokenizer",
    # Herbert
    "HerbertTokenizer",
    "HerbertTokenizerFast",
    # Phoebus
    "PhobertTokenizer",
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Magic attributes are not documented.
    if name.startswith("__"):
        return True
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True

    # NOT DOCUMENTED BUT NOT ON PURPOSE, SHOULD BE FIXED!
    # All data collators should be documented
    if name.startswith("DataCollator") or name.endswith("data_collator"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
    """ Check all models are properly documented."""
    documented_objs = find_all_documented_objects()
    undocumented_objs = [c for c in dir(transformers) if c not in documented_objs and not ignore_undocumented(c)]
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )


453
454
455
def check_repo_quality():
    """ Check all models are properly tested and documented."""
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
456
    check_all_decorator_order()
457
    check_all_models_are_tested()
458
459
    print("Checking all objects are properly documented.")
    check_all_objects_are_documented
460
461
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
462
463
464
465


if __name__ == "__main__":
    check_repo_quality()