check_repo.py 22.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from pathlib import Path
22

23
24
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
25
26
from transformers.models.auto import get_values

27
28
29
30
31

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
32
PATH_TO_DOC = "docs/source"
33

34
35
36
37
38
39
40
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
    "T5Stack",
    "TFDPRSpanPredictor",
]

41
42
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
43
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
44
    # models to ignore for not tested
Vasudev Gupta's avatar
Vasudev Gupta committed
45
46
47
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
48
49
50
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
51
52
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
53
54
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
55
56
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
57
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
58
    "BartEncoder",  # Building part of bigger (tested) model.
59
    "BertLMHeadModel",  # Needs to be setup as decoder.
60
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
61
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
62
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
63
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
64
    "MBartEncoder",  # Building part of bigger (tested) model.
65
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
66
67
68
69
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
70
    "PegasusEncoder",  # Building part of bigger (tested) model.
71
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
72
    "DPREncoder",  # Building part of bigger (tested) model.
73
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
74
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
75
    "TFDPREncoder",  # Building part of bigger (tested) model.
76
77
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
abhishek thakur's avatar
abhishek thakur committed
78
    "SeparableConv1D",  # Building part of bigger (tested) model.
79
80
81
82
83
84
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
85
    "test_modeling_flax_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
86
    "test_modeling_mbart.py",
Patrick von Platen's avatar
Patrick von Platen committed
87
    "test_modeling_mt5.py",
Stas Bekman's avatar
Stas Bekman committed
88
    "test_modeling_pegasus.py",
89
    "test_modeling_tf_camembert.py",
Sylvain Gugger's avatar
Sylvain Gugger committed
90
    "test_modeling_tf_mt5.py",
91
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
92
    "test_modeling_xlm_prophetnet.py",
93
94
95
    "test_modeling_xlm_roberta.py",
]

96
97
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
98
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
99
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
100
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
101
102
    "CLIPTextModel",
    "CLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
103
104
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
105
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
106
    "DetrForSegmentation",
107
108
109
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
110
111
112
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
113
114
115
116
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
117
    "TFDPRReader",
118
119
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
120
121
122
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
123
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
124
    "HubertForCTC",
125
126
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
127
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
128
129
130
131
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
132
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
133
    "TFHubertForCTC",
134
135
]

136
137
138
139
140
141
142
143
144
145
146
147
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
148
    """Get the model modules inside the transformers library."""
149
150
151
152
153
154
155
156
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
157
        "modeling_flax_auto",
Stas Bekman's avatar
Stas Bekman committed
158
        "modeling_flax_utils",
159
160
161
162
163
164
165
166
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
170
171
172
173
174
175
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
176
177
178
    return modules


179
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
180
    """Get the objects in module that are models."""
181
    models = []
182
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
183
    for attr_name in dir(module):
184
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
185
186
187
188
189
190
191
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


222
223
224
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
225
    """Get the model test files."""
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
        "test_modeling_marian",
        "test_modeling_tf_common",
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
246
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
247
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
248
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
249
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
250
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
251
252
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
253
    if len(all_models) > 0:
254
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
257
258
259
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
260
261
262
263
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
264
    """Check models defined in module are tested in test_file."""
265
    # XxxPreTrainedModel are not tested
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
289
    """Check all models are properly tested."""
290
291
292
293
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        test_file = f"test_{module.__name__.split('.')[-1]}.py"
295
296
297
298
299
300
301
302
303
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


304
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
305
    """Return the list of all models in at least one auto class."""
306
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
307
308
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
309
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
310
311
312
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
313
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
314
315
316
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
317
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
318
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
319
    return [cls for cls in result]
320
321


322
323
324
325
326
327
328
329
330
331
332
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


333
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
334
    """Check models defined in module are each in an auto class."""
335
336
337
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
338
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
339
340
341
342
343
344
345
346
347
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
348
    """Check all models are each in an auto class."""
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
370
371
372
373
374
375
376
377
378
379
380
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
381
382
383
384
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
385
    """Check that in the test file `filename` the slow decorator is always last."""
386
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
403
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
406
407
408
409
410
411
412
413
414
415
416
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


417
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
418
    """Parse the content of all doc files to detect which classes and functions it documents"""
419
420
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
421
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
422
423
424
425
426
427
428
429
430
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
431
    "BartPretrainedModel",
432
433
    "DataCollator",
    "DataCollatorForSOP",
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
449
    "TFBartPretrainedModel",
450
451
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
452
    "Wav2Vec2ForMaskedLM",
453
    "Wav2Vec2Tokenizer",
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
471
    "CharacterTokenizer",  # Internal, should never have been in the main init.
472
    "DPRPretrainedReader",  # Like an Encoder.
473
    "MecabTokenizer",  # Internal, should never have been in the main init.
474
475
476
477
478
479
480
481
482
483
484
485
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
486
    "requires_backends",  # Internal function
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
538
    """Check all models are properly documented."""
539
    documented_objs = find_all_documented_objects()
540
541
542
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
543
544
545
546
547
548
549
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )


550
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
551
    """Check all models are properly tested and documented."""
552
553
    print("Checking all models are public.")
    check_models_are_in_init()
554
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
555
    check_all_decorator_order()
556
    check_all_models_are_tested()
557
    print("Checking all objects are properly documented.")
558
    check_all_objects_are_documented()
559
560
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
561
562
563
564


if __name__ == "__main__":
    check_repo_quality()