check_repo.py 38.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
26
27
28
29
30
31
32
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
from transformers.models.auto.modeling_flax_auto import FLAX_MODEL_MAPPING_NAMES
from transformers.models.auto.modeling_tf_auto import TF_MODEL_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
33
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
34

35
36
37
38
39

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
40
PATH_TO_DOC = "docs/source/en"
41

42
43
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
44
    "AltRobertaModel",
45
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
46
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
47
    "RealmBertModel",
48
    "T5Stack",
49
    "MT5Stack",
50
    "SwitchTransformersStack",
51
    "TFDPRSpanPredictor",
52
53
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
54
55
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
56
57
]

58
59
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
60
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
61
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
62
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
63
64
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
65
    "ErnieMForInformationExtraction",
66
67
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
68
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
69
70
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
71
72
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
73
74
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
75
76
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
77
    "OPTDecoder",  # Building part of bigger (tested) model.
78
79
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
80
81
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
82
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
83
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
84
85
86
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
87
88
89
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
90
91
92
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
93
94
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
95
96
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
97
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
98
99
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
100
101
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
102
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
103
    "BartEncoder",  # Building part of bigger (tested) model.
104
    "BertLMHeadModel",  # Needs to be setup as decoder.
105
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
106
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
107
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
108
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
109
    "MBartEncoder",  # Building part of bigger (tested) model.
110
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
111
112
113
114
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
115
116
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
117
    "PegasusEncoder",  # Building part of bigger (tested) model.
118
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
119
120
121
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
122
    "DPREncoder",  # Building part of bigger (tested) model.
123
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
124
125
126
127
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
128
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
129
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
130
    "TFDPREncoder",  # Building part of bigger (tested) model.
131
132
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
133
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
134
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
135
136
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
137
    "SeparableConv1D",  # Building part of bigger (tested) model.
138
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
139
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
140
    "OPTDecoderWrapper",
141
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
142
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
143
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
144
145
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
146
147
148
149
150
151
152
153
154
155
156
157
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
158
159
160
161
162
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
163
164
165
166
167
168
169
170
171
172
173
174
175
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
176
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
177
178
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
179
180
]

181
182
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
183
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
184
    # models to ignore for model xxx mapping
185
186
    "AlignTextModel",
    "AlignVisionModel",
187
188
189
190
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
191
192
193
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
194
    "ErnieMForInformationExtraction",
195
    "GitVisionModel",
196
197
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
198
199
200
201
202
203
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
204
    "Swin2SRForImageSuperResolution",
205
206
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
207
208
209
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
210
    "EsmForProteinFolding",
211
    "GPTSanJapaneseModel",
212
    "TimeSeriesTransformerForPrediction",
213
214
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
215
216
217
218
219
220
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
221
    "DPTForDepthEstimation",
222
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
223
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
224
225
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
226
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
227
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
228
229
230
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
231
232
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
233
    "SegformerDecodeHead",
234
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
235
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
236
237
238
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
239
    "BeitForMaskedImageModeling",
240
241
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
242
    "CLIPTextModel",
243
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
244
    "CLIPVisionModel",
245
    "CLIPVisionModelWithProjection",
246
247
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
248
249
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
250
251
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
252
253
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
254
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
255
    "DetrForSegmentation",
256
    "ConditionalDetrForSegmentation",
257
258
    "DPRReader",
    "FlaubertForQuestionAnswering",
259
260
261
262
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
263
    "GPT2DoubleHeadsModel",
264
    "GPTSw3DoubleHeadsModel",
265
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
266
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
267
268
269
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
270
    "OpenAIGPTDoubleHeadsModel",
271
272
273
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
274
275
276
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
277
278
279
280
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
281
    "TFDPRReader",
282
    "TFGPT2DoubleHeadsModel",
283
    "TFLayoutLMForQuestionAnswering",
284
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
285
286
287
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
288
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
289
    "HubertForCTC",
290
291
    "SEWForCTC",
    "SEWDForCTC",
292
293
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
294
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
295
296
297
298
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
299
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
300
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
301
302
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
303
304
305
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
306
    "TvltForAudioVisualClassification",
307
308
309
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
310
311
]

312
313
314
315
316
317
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
318
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
319
        ("donut-swin", "donut"),
320
321
322
323
    ]
)


324
# This is to make sure the transformers module imported is the one in the repo.
325
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
326
327


328
329
330
331
332
333
334
335
336
337
338
339
340
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

341
    missing_models = sorted(set(_models).difference(models))
342
343
344
345
346
347
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


348
349
350
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
351
    """Get the model modules inside the transformers library."""
352
353
354
355
356
357
358
359
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
360
        "modeling_flax_auto",
361
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
362
        "modeling_flax_utils",
363
        "modeling_speech_encoder_decoder",
364
        "modeling_flax_speech_encoder_decoder",
365
        "modeling_flax_vision_encoder_decoder",
366
367
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
368
        "modeling_tf_encoder_decoder",
369
370
371
372
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
373
        "modeling_tf_vision_encoder_decoder",
374
        "modeling_vision_encoder_decoder",
375
376
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
377
378
379
380
381
382
383
384
385
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
386
387
388
    return modules


389
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
390
    """Get the objects in module that are models."""
391
    models = []
392
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
393
    for attr_name in dir(module):
394
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
395
396
397
398
399
400
401
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


402
403
404
405
406
407
408
409
410
411
412
413
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
414
415
    if model.endswith("Prenet"):
        return True
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


434
435
436
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
437
438
439
440
441
442
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

443
444
445
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
446
        "test_modeling_flax_encoder_decoder",
447
        "test_modeling_flax_speech_encoder_decoder",
448
449
        "test_modeling_marian",
        "test_modeling_tf_common",
450
        "test_modeling_tf_encoder_decoder",
451
452
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
453
454
455
456
457
458
459
460
461
462
463
464
465
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
466
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
467
468
469
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

470
471
472
473
474
475
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
476
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
477
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
478
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
479
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
480
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
481
482
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
483
    if len(all_models) > 0:
484
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
485
486
487
488
489
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
490
491
492
493
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
494
    """Check models defined in module are tested in test_file."""
495
    # XxxPreTrainedModel are not tested
496
497
498
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
499
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
519
    """Check all models are properly tested."""
520
521
522
523
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
524
525
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
526
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
527
528
529
530
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
531
532
533
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
534
535
536
537
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


538
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
539
    """Return the list of all models in at least one auto class."""
540
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
541
542
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
543
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
544
545
546
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
547
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
548
549
550
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
551
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
552
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
553
    return list(result)
554
555


556
557
558
559
560
561
562
563
564
565
566
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


567
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
568
    """Check models defined in module are each in an auto class."""
569
570
571
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
572
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
573
574
575
576
577
578
579
580
581
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
582
    """Check all models are each in an auto class."""
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
604
605
606
607
608
609
610
611
612
613
614
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
    failures = []

    mapping_to_check = {
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
        "MODEL_MAPPING_NAMES": MODEL_MAPPING_NAMES,
        "TF_MODEL_MAPPING_NAMES": TF_MODEL_MAPPING_NAMES,
        "FLAX_MODEL_MAPPING_NAMES": FLAX_MODEL_MAPPING_NAMES,
    }

    for name, mapping in mapping_to_check.items():
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
649
650
651
652
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
653
    """Check that in the test file `filename` the slow decorator is always last."""
654
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
671
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
672
673
674
675
676
677
678
679
680
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
681
682
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
683
684
685
        )


686
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
687
    """Parse the content of all doc files to detect which classes and functions it documents"""
688
689
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
690
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
691
692
693
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
694
695
696
697
698
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
699
700
701
702
703
704
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
705
    "BartPretrainedModel",
706
707
    "DataCollator",
    "DataCollatorForSOP",
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
723
    "TFBartPretrainedModel",
724
725
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
726
    "Wav2Vec2ForMaskedLM",
727
    "Wav2Vec2Tokenizer",
728
729
730
731
732
733
734
735
736
737
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
738
739
    "TFTrainer",
    "TFTrainingArguments",
740
741
742
743
744
745
746
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
747
    "CharacterTokenizer",  # Internal, should never have been in the main init.
748
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
749
    "DummyObject",  # Just picked by mistake sometimes.
750
    "MecabTokenizer",  # Internal, should never have been in the main init.
751
752
753
754
755
756
757
758
759
760
761
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
762
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
763
    "AltRobertaModel",  # Internal module
764
765
766
767
768
769
770
771
772
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
773
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
774
775
    "BitBackbone",
    "ConvNextBackbone",
776
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
777
    "MaskFormerSwinBackbone",
778
779
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
780
781
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
782
    "SwinBackbone",
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
825
    """Check all models are properly documented."""
826
    documented_objs = find_all_documented_objects()
827
828
829
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
830
831
832
833
834
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
835
    check_docstrings_are_in_md()
836
837
838
839
840
841
842
843
844
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
845
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
891
        with open(file, encoding="utf-8") as f:
892
893
894
895
896
897
898
899
900
901
902
903
904
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
905
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
906
907
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
908
909


910
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
911
    """Check all models are properly tested and documented."""
912
913
    print("Checking all models are included.")
    check_model_list()
914
915
    print("Checking all models are public.")
    check_models_are_in_init()
916
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
917
    check_all_decorator_order()
918
    check_all_models_are_tested()
919
    print("Checking all objects are properly documented.")
920
    check_all_objects_are_documented()
921
922
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
923
924
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
925
926
927
928


if __name__ == "__main__":
    check_repo_quality()