check_repo.py 29.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
39
    "RealmBertModel",
40
41
42
43
    "T5Stack",
    "TFDPRSpanPredictor",
]

44
45
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
46
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
47
    # models to ignore for not tested
48
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
49
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
50
51
52
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
53
54
55
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
56
57
58
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
59
60
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
61
62
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
63
64
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
65
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
66
    "BartEncoder",  # Building part of bigger (tested) model.
67
    "BertLMHeadModel",  # Needs to be setup as decoder.
68
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
69
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
70
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
71
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
72
    "MBartEncoder",  # Building part of bigger (tested) model.
73
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
74
75
76
77
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
78
    "PegasusEncoder",  # Building part of bigger (tested) model.
79
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
80
    "DPREncoder",  # Building part of bigger (tested) model.
81
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
82
83
84
85
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
86
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
87
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
88
    "TFDPREncoder",  # Building part of bigger (tested) model.
89
90
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
91
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
92
    "SeparableConv1D",  # Building part of bigger (tested) model.
93
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
94
95
96
97
98
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
99
    "decision_transformer/test_modeling_decision_transformer.py",
100
101
102
103
104
105
106
107
    "camembert/test_modeling_camembert.py",
    "mt5/test_modeling_flax_mt5.py",
    "mbart/test_modeling_mbart.py",
    "mt5/test_modeling_mt5.py",
    "pegasus/test_modeling_pegasus.py",
    "camembert/test_modeling_tf_camembert.py",
    "mt5/test_modeling_tf_mt5.py",
    "xlm_roberta/test_modeling_tf_xlm_roberta.py",
108
    "xlm_roberta/test_modeling_flax_xlm_roberta.py",
109
110
111
112
    "xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "xlm_roberta/test_modeling_xlm_roberta.py",
    "vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
113
    "decision_transformer/test_modeling_decision_transformer.py",
114
115
]

116
117
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
118
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
119
    # models to ignore for model xxx mapping
120
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
121
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
122
123
124
125
    "ViltForQuestionAnswering",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
126
127
128
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
129
130
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
131
    "SegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
132
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
133
134
135
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
136
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
137
138
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
139
140
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
141
142
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
143
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
144
    "DetrForSegmentation",
145
146
147
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
148
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
149
150
151
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
152
153
154
155
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
156
157
158
159
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
160
    "TFDPRReader",
161
162
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
163
164
165
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
166
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
167
    "HubertForCTC",
168
169
    "SEWForCTC",
    "SEWDForCTC",
170
171
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
172
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
173
174
175
176
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
177
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
178
    "TFHubertForCTC",
179
    "MaskFormerForInstanceSegmentation",
180
181
]

182
183
184
185
186
187
188
189
190
191
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
    ]
)


192
193
194
195
196
197
198
199
200
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


221
222
223
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
224
    """Get the model modules inside the transformers library."""
225
226
227
228
229
230
231
232
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
233
        "modeling_flax_auto",
234
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
235
        "modeling_flax_utils",
236
        "modeling_speech_encoder_decoder",
237
        "modeling_flax_speech_encoder_decoder",
238
        "modeling_flax_vision_encoder_decoder",
239
240
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
241
        "modeling_tf_encoder_decoder",
242
243
244
245
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
246
        "modeling_tf_vision_encoder_decoder",
247
        "modeling_vision_encoder_decoder",
248
249
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
250
251
252
253
254
255
256
257
258
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
259
260
261
    return modules


262
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
263
    """Get the objects in module that are models."""
264
    models = []
265
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
266
    for attr_name in dir(module):
267
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
268
269
270
271
272
273
274
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


305
306
307
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
308
    """Get the model test files."""
309
310
311
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
312
        "test_modeling_flax_encoder_decoder",
313
        "test_modeling_flax_speech_encoder_decoder",
314
315
        "test_modeling_marian",
        "test_modeling_tf_common",
316
        "test_modeling_tf_encoder_decoder",
317
318
    ]
    test_files = []
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    for file_or_dir in os.listdir(PATH_TO_TESTS):
        path = os.path.join(PATH_TO_TESTS, file_or_dir)
        if os.path.isdir(path):
            filenames = [os.path.join(file_or_dir, file) for file in os.listdir(path)]
        else:
            filenames = [file_or_dir]

        for filename in filenames:
            if (
                os.path.isfile(os.path.join(PATH_TO_TESTS, filename))
                and "test_modeling" in filename
                and not os.path.splitext(filename)[0] in _ignore_files
            ):
                test_files.append(filename)
333
334
335
336
337
338
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
339
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
340
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
341
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
342
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
343
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
344
345
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
346
    if len(all_models) > 0:
347
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
348
349
350
351
352
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
353
354
355
356
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
357
    """Check models defined in module are tested in test_file."""
358
    # XxxPreTrainedModel are not tested
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
382
    """Check all models are properly tested."""
383
384
385
386
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
387
388
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
389
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
390
391
392
393
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
394
395
396
397
398
399
400
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


401
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
402
    """Return the list of all models in at least one auto class."""
403
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
404
405
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
406
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
407
408
409
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
410
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
411
412
413
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
414
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
415
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
416
    return [cls for cls in result]
417
418


419
420
421
422
423
424
425
426
427
428
429
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


430
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
431
    """Check models defined in module are each in an auto class."""
432
433
434
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
435
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
436
437
438
439
440
441
442
443
444
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
445
    """Check all models are each in an auto class."""
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
467
468
469
470
471
472
473
474
475
476
477
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
478
479
480
481
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
482
    """Check that in the test file `filename` the slow decorator is always last."""
483
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
500
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503
504
505
506
507
508
509
510
511
512
513
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


514
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
515
    """Parse the content of all doc files to detect which classes and functions it documents"""
516
517
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
518
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
519
520
521
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
522
523
524
525
526
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
527
528
529
530
531
532
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
533
    "BartPretrainedModel",
534
535
    "DataCollator",
    "DataCollatorForSOP",
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
551
    "TFBartPretrainedModel",
552
553
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
554
    "Wav2Vec2ForMaskedLM",
555
    "Wav2Vec2Tokenizer",
556
557
558
559
560
561
562
563
564
565
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
566
567
    "TFTrainer",
    "TFTrainingArguments",
568
569
570
571
572
573
574
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
575
    "CharacterTokenizer",  # Internal, should never have been in the main init.
576
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
577
    "DummyObject",  # Just picked by mistake sometimes.
578
    "MecabTokenizer",  # Internal, should never have been in the main init.
579
580
581
582
583
584
585
586
587
588
589
590
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
591
    "requires_backends",  # Internal function
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
643
    """Check all models are properly documented."""
644
    documented_objs = find_all_documented_objects()
645
646
647
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
648
649
650
651
652
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
653
    check_docstrings_are_in_md()
654
655
656
657
658
659
660
661
662
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
663
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
723
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
724
725
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
726
727


728
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
729
    """Check all models are properly tested and documented."""
730
731
    print("Checking all models are included.")
    check_model_list()
732
733
    print("Checking all models are public.")
    check_models_are_in_init()
734
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
735
    check_all_decorator_order()
736
    check_all_models_are_tested()
737
    print("Checking all objects are properly documented.")
738
    check_all_objects_are_documented()
739
740
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
741
742
743
744


if __name__ == "__main__":
    check_repo_quality()