check_repo.py 38.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
26
27
28
29
30
31
32
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
from transformers.models.auto.modeling_flax_auto import FLAX_MODEL_MAPPING_NAMES
from transformers.models.auto.modeling_tf_auto import TF_MODEL_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
33
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
34

35
36
37
38
39

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
40
PATH_TO_DOC = "docs/source/en"
41

42
43
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
44
    "AltRobertaModel",
45
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
46
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
47
    "RealmBertModel",
48
    "T5Stack",
49
    "MT5Stack",
50
    "SwitchTransformersStack",
51
    "TFDPRSpanPredictor",
52
53
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
54
55
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
56
57
]

58
59
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
60
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
61
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
62
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
63
64
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
65
    "ErnieMForInformationExtraction",
66
67
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
68
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
69
70
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
71
72
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
73
74
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
75
76
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
77
    "OPTDecoder",  # Building part of bigger (tested) model.
78
79
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
80
81
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
82
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
83
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
84
85
86
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
87
88
89
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
90
91
92
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
93
94
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
95
96
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
97
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
98
99
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
100
101
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
102
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
103
    "BartEncoder",  # Building part of bigger (tested) model.
104
    "BertLMHeadModel",  # Needs to be setup as decoder.
105
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
106
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
107
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
108
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
109
    "MBartEncoder",  # Building part of bigger (tested) model.
110
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
111
112
113
114
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
115
116
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
117
    "PegasusEncoder",  # Building part of bigger (tested) model.
118
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
119
120
121
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
122
    "DPREncoder",  # Building part of bigger (tested) model.
123
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
124
125
126
127
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
128
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
129
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
130
    "TFDPREncoder",  # Building part of bigger (tested) model.
131
132
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
133
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
134
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
135
136
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
137
    "SeparableConv1D",  # Building part of bigger (tested) model.
138
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
139
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
140
    "OPTDecoderWrapper",
141
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
142
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
143
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
144
145
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
146
147
148
149
150
151
152
153
154
155
156
157
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
158
159
160
161
162
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
163
164
165
166
167
168
169
170
171
172
173
174
175
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
176
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
177
178
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
179
180
]

181
182
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
183
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
184
    # models to ignore for model xxx mapping
185
186
187
188
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
189
190
191
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
192
    "ErnieMForInformationExtraction",
193
    "GitVisionModel",
194
195
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
196
197
198
199
200
201
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
202
    "Swin2SRForImageSuperResolution",
203
204
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
205
206
207
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
208
    "EsmForProteinFolding",
209
    "GPTSanJapaneseModel",
210
    "TimeSeriesTransformerForPrediction",
211
212
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
213
214
215
216
217
218
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
219
    "DPTForDepthEstimation",
220
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
221
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
222
223
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
224
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
225
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
226
227
228
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
229
230
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
231
    "SegformerDecodeHead",
232
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
233
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
234
235
236
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
237
    "BeitForMaskedImageModeling",
238
239
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
240
    "CLIPTextModel",
241
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
242
    "CLIPVisionModel",
243
    "CLIPVisionModelWithProjection",
244
245
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
246
247
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
248
249
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
250
251
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
252
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
253
    "DetrForSegmentation",
254
    "ConditionalDetrForSegmentation",
255
256
    "DPRReader",
    "FlaubertForQuestionAnswering",
257
258
259
260
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
261
    "GPT2DoubleHeadsModel",
262
    "GPTSw3DoubleHeadsModel",
263
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
264
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
265
266
267
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
268
    "OpenAIGPTDoubleHeadsModel",
269
270
271
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
272
273
274
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
275
276
277
278
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
279
    "TFDPRReader",
280
    "TFGPT2DoubleHeadsModel",
281
    "TFLayoutLMForQuestionAnswering",
282
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
283
284
285
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
286
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
287
    "HubertForCTC",
288
289
    "SEWForCTC",
    "SEWDForCTC",
290
291
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
292
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
293
294
295
296
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
297
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
298
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
299
300
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
301
302
303
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
304
    "TvltForAudioVisualClassification",
305
306
307
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
308
309
]

310
311
312
313
314
315
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
316
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
317
        ("donut-swin", "donut"),
318
319
320
321
    ]
)


322
# This is to make sure the transformers module imported is the one in the repo.
323
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
324
325


326
327
328
329
330
331
332
333
334
335
336
337
338
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

339
    missing_models = sorted(set(_models).difference(models))
340
341
342
343
344
345
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


346
347
348
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
349
    """Get the model modules inside the transformers library."""
350
351
352
353
354
355
356
357
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
358
        "modeling_flax_auto",
359
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
360
        "modeling_flax_utils",
361
        "modeling_speech_encoder_decoder",
362
        "modeling_flax_speech_encoder_decoder",
363
        "modeling_flax_vision_encoder_decoder",
364
365
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
366
        "modeling_tf_encoder_decoder",
367
368
369
370
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
371
        "modeling_tf_vision_encoder_decoder",
372
        "modeling_vision_encoder_decoder",
373
374
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
379
380
381
382
383
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
384
385
386
    return modules


387
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
388
    """Get the objects in module that are models."""
389
    models = []
390
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
391
    for attr_name in dir(module):
392
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
393
394
395
396
397
398
399
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


400
401
402
403
404
405
406
407
408
409
410
411
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
412
413
    if model.endswith("Prenet"):
        return True
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


432
433
434
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
435
436
437
438
439
440
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

441
442
443
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
444
        "test_modeling_flax_encoder_decoder",
445
        "test_modeling_flax_speech_encoder_decoder",
446
447
        "test_modeling_marian",
        "test_modeling_tf_common",
448
        "test_modeling_tf_encoder_decoder",
449
450
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
451
452
453
454
455
456
457
458
459
460
461
462
463
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
464
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
465
466
467
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

468
469
470
471
472
473
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
474
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
475
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
476
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
477
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
478
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
479
480
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
481
    if len(all_models) > 0:
482
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
483
484
485
486
487
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
488
489
490
491
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
492
    """Check models defined in module are tested in test_file."""
493
    # XxxPreTrainedModel are not tested
494
495
496
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
497
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
517
    """Check all models are properly tested."""
518
519
520
521
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
522
523
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
524
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
525
526
527
528
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
529
530
531
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
532
533
534
535
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


536
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
537
    """Return the list of all models in at least one auto class."""
538
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
539
540
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
541
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
542
543
544
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
545
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
546
547
548
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
549
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
550
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
551
    return list(result)
552
553


554
555
556
557
558
559
560
561
562
563
564
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


565
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
566
    """Check models defined in module are each in an auto class."""
567
568
569
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
570
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
571
572
573
574
575
576
577
578
579
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
580
    """Check all models are each in an auto class."""
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
602
603
604
605
606
607
608
609
610
611
612
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
    failures = []

    mapping_to_check = {
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
        "MODEL_MAPPING_NAMES": MODEL_MAPPING_NAMES,
        "TF_MODEL_MAPPING_NAMES": TF_MODEL_MAPPING_NAMES,
        "FLAX_MODEL_MAPPING_NAMES": FLAX_MODEL_MAPPING_NAMES,
    }

    for name, mapping in mapping_to_check.items():
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
647
648
649
650
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
651
    """Check that in the test file `filename` the slow decorator is always last."""
652
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
669
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
670
671
672
673
674
675
676
677
678
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
679
680
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
681
682
683
        )


684
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
685
    """Parse the content of all doc files to detect which classes and functions it documents"""
686
687
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
688
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
689
690
691
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
692
693
694
695
696
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
697
698
699
700
701
702
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
703
    "BartPretrainedModel",
704
705
    "DataCollator",
    "DataCollatorForSOP",
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
721
    "TFBartPretrainedModel",
722
723
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
724
    "Wav2Vec2ForMaskedLM",
725
    "Wav2Vec2Tokenizer",
726
727
728
729
730
731
732
733
734
735
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
736
737
    "TFTrainer",
    "TFTrainingArguments",
738
739
740
741
742
743
744
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
745
    "CharacterTokenizer",  # Internal, should never have been in the main init.
746
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
747
    "DummyObject",  # Just picked by mistake sometimes.
748
    "MecabTokenizer",  # Internal, should never have been in the main init.
749
750
751
752
753
754
755
756
757
758
759
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
760
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
761
    "AltRobertaModel",  # Internal module
762
763
764
765
766
767
768
769
770
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
771
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
772
773
    "BitBackbone",
    "ConvNextBackbone",
774
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
775
    "MaskFormerSwinBackbone",
776
777
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
778
779
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
780
    "SwinBackbone",
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
823
    """Check all models are properly documented."""
824
    documented_objs = find_all_documented_objects()
825
826
827
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
828
829
830
831
832
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
833
    check_docstrings_are_in_md()
834
835
836
837
838
839
840
841
842
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
843
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
889
        with open(file, encoding="utf-8") as f:
890
891
892
893
894
895
896
897
898
899
900
901
902
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
903
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
904
905
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
906
907


908
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
909
    """Check all models are properly tested and documented."""
910
911
    print("Checking all models are included.")
    check_model_list()
912
913
    print("Checking all models are public.")
    check_models_are_in_init()
914
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
915
    check_all_decorator_order()
916
    check_all_models_are_tested()
917
    print("Checking all objects are properly documented.")
918
    check_all_objects_are_documented()
919
920
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
921
922
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
923
924
925
926


if __name__ == "__main__":
    check_repo_quality()