check_repo.py 33.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
    "T5Stack",
42
    "SwitchTransformersStack",
43
    "TFDPRSpanPredictor",
44
45
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
46
47
]

48
49
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
50
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
51
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
52
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
53
54
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
55
56
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
57
58
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
59
60
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
61
    "OPTDecoder",  # Building part of bigger (tested) model.
62
63
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
64
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
65
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
66
67
68
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
69
70
71
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
72
73
74
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
75
76
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
77
78
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
79
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
80
81
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
84
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
85
    "BartEncoder",  # Building part of bigger (tested) model.
86
    "BertLMHeadModel",  # Needs to be setup as decoder.
87
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
88
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
89
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
90
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
91
    "MBartEncoder",  # Building part of bigger (tested) model.
92
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
93
94
95
96
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
97
98
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
99
    "PegasusEncoder",  # Building part of bigger (tested) model.
100
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
101
102
103
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
104
    "DPREncoder",  # Building part of bigger (tested) model.
105
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
106
107
108
109
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
110
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
111
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
112
    "TFDPREncoder",  # Building part of bigger (tested) model.
113
114
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
115
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
116
117
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
118
    "SeparableConv1D",  # Building part of bigger (tested) model.
119
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
120
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
121
    "OPTDecoderWrapper",
122
    "TFSegformerDecodeHead",  # Not a regular model.
123
124
125
126
127
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
143
144
]

145
146
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
147
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
148
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
149
150
151
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
152
    "EsmForProteinFolding",
153
    "TimeSeriesTransformerForPrediction",
154
155
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
156
157
158
159
160
161
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
162
    "DPTForDepthEstimation",
163
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
164
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
165
166
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
167
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
168
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
169
170
171
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
172
173
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
174
    "SegformerDecodeHead",
175
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
176
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
177
178
179
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
180
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
181
    "CLIPTextModel",
182
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
183
    "CLIPVisionModel",
184
    "CLIPVisionModelWithProjection",
185
186
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
187
188
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
189
190
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
191
192
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
193
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
194
    "DetrForSegmentation",
195
    "ConditionalDetrForSegmentation",
196
197
    "DPRReader",
    "FlaubertForQuestionAnswering",
198
199
200
201
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
202
    "GPT2DoubleHeadsModel",
203
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
204
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
205
206
207
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
208
    "OpenAIGPTDoubleHeadsModel",
209
210
211
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
212
213
214
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
215
216
217
218
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
219
    "TFDPRReader",
220
    "TFGPT2DoubleHeadsModel",
221
    "TFLayoutLMForQuestionAnswering",
222
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
223
224
225
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
226
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
227
    "HubertForCTC",
228
229
    "SEWForCTC",
    "SEWDForCTC",
230
231
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
232
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
233
234
235
236
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
237
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
238
    "TFHubertForCTC",
239
    "MaskFormerForInstanceSegmentation",
NielsRogge's avatar
NielsRogge committed
240
241
    "XCLIPVisionModel",
    "XCLIPTextModel",
242
243
]

244
245
246
247
248
249
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
250
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
251
        ("donut-swin", "donut"),
252
253
254
255
    ]
)


256
257
258
259
260
261
262
263
264
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


285
286
287
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
288
    """Get the model modules inside the transformers library."""
289
290
291
292
293
294
295
296
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
297
        "modeling_flax_auto",
298
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
299
        "modeling_flax_utils",
300
        "modeling_speech_encoder_decoder",
301
        "modeling_flax_speech_encoder_decoder",
302
        "modeling_flax_vision_encoder_decoder",
303
304
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
305
        "modeling_tf_encoder_decoder",
306
307
308
309
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
310
        "modeling_tf_vision_encoder_decoder",
311
        "modeling_vision_encoder_decoder",
312
313
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
314
315
316
317
318
319
320
321
322
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
323
324
325
    return modules


326
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
327
    """Get the objects in module that are models."""
328
    models = []
329
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
330
    for attr_name in dir(module):
331
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
332
333
334
335
336
337
338
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


369
370
371
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
372
373
374
375
376
377
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

378
379
380
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
381
        "test_modeling_flax_encoder_decoder",
382
        "test_modeling_flax_speech_encoder_decoder",
383
384
        "test_modeling_marian",
        "test_modeling_tf_common",
385
        "test_modeling_tf_encoder_decoder",
386
387
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

405
406
407
408
409
410
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
411
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
412
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
413
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
414
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
415
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
416
417
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
418
    if len(all_models) > 0:
419
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
420
421
422
423
424
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
425
426
427
428
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
429
    """Check models defined in module are tested in test_file."""
430
    # XxxPreTrainedModel are not tested
431
432
433
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
434
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
454
    """Check all models are properly tested."""
455
456
457
458
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
459
460
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
461
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
462
463
464
465
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
466
467
468
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
469
470
471
472
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


473
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
474
    """Return the list of all models in at least one auto class."""
475
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
476
477
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
478
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
479
480
481
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
482
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
483
484
485
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
486
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
487
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
488
    return [cls for cls in result]
489
490


491
492
493
494
495
496
497
498
499
500
501
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


502
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
503
    """Check models defined in module are each in an auto class."""
504
505
506
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
507
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
508
509
510
511
512
513
514
515
516
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
517
    """Check all models are each in an auto class."""
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
539
540
541
542
543
544
545
546
547
548
549
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
550
551
552
553
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
554
    """Check that in the test file `filename` the slow decorator is always last."""
555
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
572
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
573
574
575
576
577
578
579
580
581
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
582
583
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
584
585
586
        )


587
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
588
    """Parse the content of all doc files to detect which classes and functions it documents"""
589
590
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
591
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
592
593
594
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
595
596
597
598
599
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
600
601
602
603
604
605
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
606
    "BartPretrainedModel",
607
608
    "DataCollator",
    "DataCollatorForSOP",
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
624
    "TFBartPretrainedModel",
625
626
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
627
    "Wav2Vec2ForMaskedLM",
628
    "Wav2Vec2Tokenizer",
629
630
631
632
633
634
635
636
637
638
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
639
640
    "TFTrainer",
    "TFTrainingArguments",
641
642
643
644
645
646
647
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
648
    "CharacterTokenizer",  # Internal, should never have been in the main init.
649
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
650
    "DummyObject",  # Just picked by mistake sometimes.
651
    "MecabTokenizer",  # Internal, should never have been in the main init.
652
653
654
655
656
657
658
659
660
661
662
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
663
    "requires_backends",  # Internal function
664
665
666
667
668
669
670
671
672
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
673
    "MaskFormerSwinBackbone",
674
675
    "ResNetBackbone",
    "AutoBackbone",
676
677
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
720
    """Check all models are properly documented."""
721
    documented_objs = find_all_documented_objects()
722
723
724
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
725
726
727
728
729
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
730
    check_docstrings_are_in_md()
731
732
733
734
735
736
737
738
739
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
740
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
786
        with open(file, encoding="utf-8") as f:
787
788
789
790
791
792
793
794
795
796
797
798
799
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
800
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
801
802
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
803
804


805
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
806
    """Check all models are properly tested and documented."""
807
808
    print("Checking all models are included.")
    check_model_list()
809
810
    print("Checking all models are public.")
    check_models_are_in_init()
811
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
812
    check_all_decorator_order()
813
    check_all_models_are_tested()
814
    print("Checking all objects are properly documented.")
815
    check_all_objects_are_documented()
816
817
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
818
819
820
821


if __name__ == "__main__":
    check_repo_quality()