check_repo.py 35.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
38
    "AltRobertaModel",
39
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
40
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
41
    "RealmBertModel",
42
    "T5Stack",
43
    "MT5Stack",
44
    "SwitchTransformersStack",
45
    "TFDPRSpanPredictor",
46
47
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
48
49
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
50
51
]

52
53
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
54
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
55
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
56
57
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
58
59
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
60
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
61
62
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
63
64
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
65
66
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
67
68
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
69
    "OPTDecoder",  # Building part of bigger (tested) model.
70
71
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
72
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
73
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
74
75
76
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
77
78
79
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
80
81
82
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
83
84
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
85
86
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
87
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
88
89
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
90
91
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
92
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
93
    "BartEncoder",  # Building part of bigger (tested) model.
94
    "BertLMHeadModel",  # Needs to be setup as decoder.
95
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
96
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
97
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
98
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
99
    "MBartEncoder",  # Building part of bigger (tested) model.
100
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
101
102
103
104
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
105
106
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
107
    "PegasusEncoder",  # Building part of bigger (tested) model.
108
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
109
110
111
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
112
    "DPREncoder",  # Building part of bigger (tested) model.
113
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
114
115
116
117
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
118
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
119
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
120
    "TFDPREncoder",  # Building part of bigger (tested) model.
121
122
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
123
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
124
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
125
126
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
127
    "SeparableConv1D",  # Building part of bigger (tested) model.
128
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
129
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
130
    "OPTDecoderWrapper",
131
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
132
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
133
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
134
135
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
136
137
138
139
140
141
142
143
144
145
146
147
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
148
149
150
151
152
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
168
169
]

170
171
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
172
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
173
    # models to ignore for model xxx mapping
174
    "GitVisionModel",
175
176
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
177
178
179
180
181
182
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
183
    "Swin2SRForImageSuperResolution",
184
185
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
186
187
188
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
189
    "EsmForProteinFolding",
190
    "TimeSeriesTransformerForPrediction",
191
192
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
193
194
195
196
197
198
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
199
    "DPTForDepthEstimation",
200
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
201
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
202
203
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
204
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
205
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
206
207
208
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
209
210
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
211
    "SegformerDecodeHead",
212
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
213
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
214
215
216
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
217
    "BeitForMaskedImageModeling",
218
219
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
220
    "CLIPTextModel",
221
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
222
    "CLIPVisionModel",
223
    "CLIPVisionModelWithProjection",
224
225
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
226
227
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
228
229
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
230
231
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
232
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
233
    "DetrForSegmentation",
234
    "ConditionalDetrForSegmentation",
235
236
    "DPRReader",
    "FlaubertForQuestionAnswering",
237
238
239
240
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
241
    "GPT2DoubleHeadsModel",
242
    "GPTSw3DoubleHeadsModel",
243
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
244
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
245
246
247
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
248
    "OpenAIGPTDoubleHeadsModel",
249
250
251
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
252
253
254
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
255
256
257
258
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
259
    "TFDPRReader",
260
    "TFGPT2DoubleHeadsModel",
261
    "TFLayoutLMForQuestionAnswering",
262
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
263
264
265
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
266
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
267
    "HubertForCTC",
268
269
    "SEWForCTC",
    "SEWDForCTC",
270
271
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
272
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
273
274
275
276
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
277
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
278
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
279
280
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
281
282
283
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
284
285
286
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
287
288
]

289
290
291
292
293
294
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
295
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
296
        ("donut-swin", "donut"),
297
298
299
300
    ]
)


301
302
303
304
305
306
307
308
309
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


330
331
332
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
333
    """Get the model modules inside the transformers library."""
334
335
336
337
338
339
340
341
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
342
        "modeling_flax_auto",
343
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
344
        "modeling_flax_utils",
345
        "modeling_speech_encoder_decoder",
346
        "modeling_flax_speech_encoder_decoder",
347
        "modeling_flax_vision_encoder_decoder",
348
349
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
350
        "modeling_tf_encoder_decoder",
351
352
353
354
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
355
        "modeling_tf_vision_encoder_decoder",
356
        "modeling_vision_encoder_decoder",
357
358
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
359
360
361
362
363
364
365
366
367
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
368
369
370
    return modules


371
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
372
    """Get the objects in module that are models."""
373
    models = []
374
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
375
    for attr_name in dir(module):
376
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
377
378
379
380
381
382
383
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


384
385
386
387
388
389
390
391
392
393
394
395
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
396
397
    if model.endswith("Prenet"):
        return True
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


416
417
418
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
419
420
421
422
423
424
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

425
426
427
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
428
        "test_modeling_flax_encoder_decoder",
429
        "test_modeling_flax_speech_encoder_decoder",
430
431
        "test_modeling_marian",
        "test_modeling_tf_common",
432
        "test_modeling_tf_encoder_decoder",
433
434
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
435
436
437
438
439
440
441
442
443
444
445
446
447
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
448
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
449
450
451
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

452
453
454
455
456
457
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
458
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
459
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
460
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
461
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
462
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
463
464
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
465
    if len(all_models) > 0:
466
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
467
468
469
470
471
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
472
473
474
475
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
476
    """Check models defined in module are tested in test_file."""
477
    # XxxPreTrainedModel are not tested
478
479
480
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
481
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
501
    """Check all models are properly tested."""
502
503
504
505
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
506
507
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
508
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
509
510
511
512
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
513
514
515
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
516
517
518
519
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


520
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
521
    """Return the list of all models in at least one auto class."""
522
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
523
524
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
525
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
526
527
528
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
529
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
530
531
532
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
533
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
534
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
535
    return [cls for cls in result]
536
537


538
539
540
541
542
543
544
545
546
547
548
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


549
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
550
    """Check models defined in module are each in an auto class."""
551
552
553
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
554
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
555
556
557
558
559
560
561
562
563
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
564
    """Check all models are each in an auto class."""
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
586
587
588
589
590
591
592
593
594
595
596
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
597
598
599
600
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
601
    """Check that in the test file `filename` the slow decorator is always last."""
602
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
619
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
620
621
622
623
624
625
626
627
628
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
629
630
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
631
632
633
        )


634
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
635
    """Parse the content of all doc files to detect which classes and functions it documents"""
636
637
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
638
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
639
640
641
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
642
643
644
645
646
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
647
648
649
650
651
652
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
653
    "BartPretrainedModel",
654
655
    "DataCollator",
    "DataCollatorForSOP",
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
671
    "TFBartPretrainedModel",
672
673
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
674
    "Wav2Vec2ForMaskedLM",
675
    "Wav2Vec2Tokenizer",
676
677
678
679
680
681
682
683
684
685
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
686
687
    "TFTrainer",
    "TFTrainingArguments",
688
689
690
691
692
693
694
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
695
    "CharacterTokenizer",  # Internal, should never have been in the main init.
696
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
697
    "DummyObject",  # Just picked by mistake sometimes.
698
    "MecabTokenizer",  # Internal, should never have been in the main init.
699
700
701
702
703
704
705
706
707
708
709
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
710
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
711
    "AltRobertaModel",  # Internal module
712
713
714
715
716
717
718
719
720
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
721
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
722
723
    "BitBackbone",
    "ConvNextBackbone",
724
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
725
    "MaskFormerSwinBackbone",
726
727
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
728
729
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
730
    "SwinBackbone",
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
773
    """Check all models are properly documented."""
774
    documented_objs = find_all_documented_objects()
775
776
777
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
778
779
780
781
782
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
783
    check_docstrings_are_in_md()
784
785
786
787
788
789
790
791
792
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
793
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
839
        with open(file, encoding="utf-8") as f:
840
841
842
843
844
845
846
847
848
849
850
851
852
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
853
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
854
855
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
856
857


858
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
859
    """Check all models are properly tested and documented."""
860
861
    print("Checking all models are included.")
    check_model_list()
862
863
    print("Checking all models are public.")
    check_models_are_in_init()
864
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
865
    check_all_decorator_order()
866
    check_all_models_are_tested()
867
    print("Checking all objects are properly documented.")
868
    check_all_objects_are_documented()
869
870
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
871
872
873
874


if __name__ == "__main__":
    check_repo_quality()