check_repo.py 34.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
38
    "AltRobertaModel",
39
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
40
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
41
    "RealmBertModel",
42
    "T5Stack",
43
    "MT5Stack",
44
    "SwitchTransformersStack",
45
    "TFDPRSpanPredictor",
46
47
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
48
49
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
50
51
]

52
53
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
54
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
55
    # models to ignore for not tested
56
57
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
58
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
59
60
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
61
62
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
63
64
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
65
66
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
67
    "OPTDecoder",  # Building part of bigger (tested) model.
68
69
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
70
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
71
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
72
73
74
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
75
76
77
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
78
79
80
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
81
82
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
83
84
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
85
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
86
87
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
88
89
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
90
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
91
    "BartEncoder",  # Building part of bigger (tested) model.
92
    "BertLMHeadModel",  # Needs to be setup as decoder.
93
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
94
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
95
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
96
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
97
    "MBartEncoder",  # Building part of bigger (tested) model.
98
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
99
100
101
102
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
103
104
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
105
    "PegasusEncoder",  # Building part of bigger (tested) model.
106
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
107
108
109
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
110
    "DPREncoder",  # Building part of bigger (tested) model.
111
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
112
113
114
115
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
116
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
117
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
118
    "TFDPREncoder",  # Building part of bigger (tested) model.
119
120
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
121
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
122
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
123
124
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
125
    "SeparableConv1D",  # Building part of bigger (tested) model.
126
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
127
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
128
    "OPTDecoderWrapper",
129
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
130
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
131
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
132
133
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
134
135
136
137
138
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
154
155
]

156
157
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
158
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
159
    # models to ignore for model xxx mapping
160
    "GitVisionModel",
161
162
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
163
164
165
166
167
168
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
169
    "Swin2SRForImageSuperResolution",
170
171
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
172
173
174
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
175
    "EsmForProteinFolding",
176
    "TimeSeriesTransformerForPrediction",
177
178
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
179
180
181
182
183
184
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
185
    "DPTForDepthEstimation",
186
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
187
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
188
189
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
190
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
191
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
192
193
194
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
195
196
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
197
    "SegformerDecodeHead",
198
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
199
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
200
201
202
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
203
    "BeitForMaskedImageModeling",
204
205
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
206
    "CLIPTextModel",
207
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
208
    "CLIPVisionModel",
209
    "CLIPVisionModelWithProjection",
210
211
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
212
213
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
214
215
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
216
217
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
218
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
219
    "DetrForSegmentation",
220
    "ConditionalDetrForSegmentation",
221
222
    "DPRReader",
    "FlaubertForQuestionAnswering",
223
224
225
226
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
227
    "GPT2DoubleHeadsModel",
228
    "GPTSw3DoubleHeadsModel",
229
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
230
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
231
232
233
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
234
    "OpenAIGPTDoubleHeadsModel",
235
236
237
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
238
239
240
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
241
242
243
244
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
245
    "TFDPRReader",
246
    "TFGPT2DoubleHeadsModel",
247
    "TFLayoutLMForQuestionAnswering",
248
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
249
250
251
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
252
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
253
    "HubertForCTC",
254
255
    "SEWForCTC",
    "SEWDForCTC",
256
257
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
258
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
259
260
261
262
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
263
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
264
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
265
266
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
267
268
269
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
270
271
]

272
273
274
275
276
277
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
278
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
279
        ("donut-swin", "donut"),
280
281
282
283
    ]
)


284
285
286
287
288
289
290
291
292
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


313
314
315
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
316
    """Get the model modules inside the transformers library."""
317
318
319
320
321
322
323
324
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
325
        "modeling_flax_auto",
326
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
327
        "modeling_flax_utils",
328
        "modeling_speech_encoder_decoder",
329
        "modeling_flax_speech_encoder_decoder",
330
        "modeling_flax_vision_encoder_decoder",
331
332
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
333
        "modeling_tf_encoder_decoder",
334
335
336
337
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
338
        "modeling_tf_vision_encoder_decoder",
339
        "modeling_vision_encoder_decoder",
340
341
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
344
345
346
347
348
349
350
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
351
352
353
    return modules


354
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
355
    """Get the objects in module that are models."""
356
    models = []
357
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
358
    for attr_name in dir(module):
359
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
360
361
362
363
364
365
366
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


397
398
399
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
400
401
402
403
404
405
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

406
407
408
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
409
        "test_modeling_flax_encoder_decoder",
410
        "test_modeling_flax_speech_encoder_decoder",
411
412
        "test_modeling_marian",
        "test_modeling_tf_common",
413
        "test_modeling_tf_encoder_decoder",
414
415
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

433
434
435
436
437
438
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
439
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
440
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
441
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
442
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
443
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
444
445
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
446
    if len(all_models) > 0:
447
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
450
451
452
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
453
454
455
456
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
457
    """Check models defined in module are tested in test_file."""
458
    # XxxPreTrainedModel are not tested
459
460
461
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
462
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
482
    """Check all models are properly tested."""
483
484
485
486
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
487
488
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
489
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
490
491
492
493
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
494
495
496
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
497
498
499
500
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


501
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
502
    """Return the list of all models in at least one auto class."""
503
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
504
505
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
506
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
507
508
509
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
510
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
511
512
513
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
514
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
515
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
516
    return [cls for cls in result]
517
518


519
520
521
522
523
524
525
526
527
528
529
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


530
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
531
    """Check models defined in module are each in an auto class."""
532
533
534
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
535
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
536
537
538
539
540
541
542
543
544
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
545
    """Check all models are each in an auto class."""
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
567
568
569
570
571
572
573
574
575
576
577
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
578
579
580
581
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
582
    """Check that in the test file `filename` the slow decorator is always last."""
583
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
600
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
601
602
603
604
605
606
607
608
609
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
610
611
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
612
613
614
        )


615
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
616
    """Parse the content of all doc files to detect which classes and functions it documents"""
617
618
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
619
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
620
621
622
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
625
626
627
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
628
629
630
631
632
633
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
634
    "BartPretrainedModel",
635
636
    "DataCollator",
    "DataCollatorForSOP",
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
652
    "TFBartPretrainedModel",
653
654
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
655
    "Wav2Vec2ForMaskedLM",
656
    "Wav2Vec2Tokenizer",
657
658
659
660
661
662
663
664
665
666
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
667
668
    "TFTrainer",
    "TFTrainingArguments",
669
670
671
672
673
674
675
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
676
    "CharacterTokenizer",  # Internal, should never have been in the main init.
677
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
678
    "DummyObject",  # Just picked by mistake sometimes.
679
    "MecabTokenizer",  # Internal, should never have been in the main init.
680
681
682
683
684
685
686
687
688
689
690
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
691
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
692
    "AltRobertaModel",  # Internal module
693
694
695
696
697
698
699
700
701
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
702
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
703
704
    "BitBackbone",
    "ConvNextBackbone",
705
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
706
    "MaskFormerSwinBackbone",
707
708
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
709
710
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
711
    "SwinBackbone",
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
754
    """Check all models are properly documented."""
755
    documented_objs = find_all_documented_objects()
756
757
758
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
759
760
761
762
763
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
764
    check_docstrings_are_in_md()
765
766
767
768
769
770
771
772
773
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
774
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
820
        with open(file, encoding="utf-8") as f:
821
822
823
824
825
826
827
828
829
830
831
832
833
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
834
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
835
836
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
837
838


839
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
840
    """Check all models are properly tested and documented."""
841
842
    print("Checking all models are included.")
    check_model_list()
843
844
    print("Checking all models are public.")
    check_models_are_in_init()
845
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
846
    check_all_decorator_order()
847
    check_all_models_are_tested()
848
    print("Checking all objects are properly documented.")
849
    check_all_objects_are_documented()
850
851
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
852
853
854
855


if __name__ == "__main__":
    check_repo_quality()