check_repo.py 30.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
39
    "RealmBertModel",
40
41
42
43
    "T5Stack",
    "TFDPRSpanPredictor",
]

44
45
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
46
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
47
    # models to ignore for not tested
Younes Belkada's avatar
Younes Belkada committed
48
    "OPTDecoder",  # Building part of bigger (tested) model.
49
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
50
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
51
52
53
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
54
55
56
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
57
58
59
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
60
61
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
62
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
63
64
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
65
66
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
67
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
68
    "BartEncoder",  # Building part of bigger (tested) model.
69
    "BertLMHeadModel",  # Needs to be setup as decoder.
70
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
71
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
72
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
73
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
74
    "MBartEncoder",  # Building part of bigger (tested) model.
75
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
76
77
78
79
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
80
    "PegasusEncoder",  # Building part of bigger (tested) model.
81
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
82
    "DPREncoder",  # Building part of bigger (tested) model.
83
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
84
85
86
87
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
88
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
89
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
90
    "TFDPREncoder",  # Building part of bigger (tested) model.
91
92
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
93
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
94
    "SeparableConv1D",  # Building part of bigger (tested) model.
95
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
96
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
97
    "OPTDecoderWrapper",
98
99
100
101
102
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
118
119
]

120
121
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
122
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
123
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
124
    "DPTForDepthEstimation",
125
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
126
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
127
128
129
130
    "ViltForQuestionAnswering",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
131
132
133
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
134
135
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
136
    "SegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
137
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
138
139
140
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
141
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
142
143
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
144
145
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
146
147
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
148
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
149
    "DetrForSegmentation",
150
151
    "DPRReader",
    "FlaubertForQuestionAnswering",
152
153
154
155
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
156
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
157
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
158
159
160
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
161
162
163
164
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
165
166
167
168
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
169
    "TFDPRReader",
170
171
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
172
173
174
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
175
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
176
    "HubertForCTC",
177
178
    "SEWForCTC",
    "SEWDForCTC",
179
180
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
181
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
182
183
184
185
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
186
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
187
    "TFHubertForCTC",
188
    "MaskFormerForInstanceSegmentation",
189
190
]

191
192
193
194
195
196
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
197
        ("data2vec-vision", "data2vec"),
198
199
200
201
    ]
)


202
203
204
205
206
207
208
209
210
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


231
232
233
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
234
    """Get the model modules inside the transformers library."""
235
236
237
238
239
240
241
242
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
243
        "modeling_flax_auto",
244
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
245
        "modeling_flax_utils",
246
        "modeling_speech_encoder_decoder",
247
        "modeling_flax_speech_encoder_decoder",
248
        "modeling_flax_vision_encoder_decoder",
249
250
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
251
        "modeling_tf_encoder_decoder",
252
253
254
255
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
256
        "modeling_tf_vision_encoder_decoder",
257
        "modeling_vision_encoder_decoder",
258
259
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262
263
264
265
266
267
268
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
269
270
271
    return modules


272
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
273
    """Get the objects in module that are models."""
274
    models = []
275
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
276
    for attr_name in dir(module):
277
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
278
279
280
281
282
283
284
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


315
316
317
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
318
319
320
321
322
323
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

324
325
326
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
327
        "test_modeling_flax_encoder_decoder",
328
        "test_modeling_flax_speech_encoder_decoder",
329
330
        "test_modeling_marian",
        "test_modeling_tf_common",
331
        "test_modeling_tf_encoder_decoder",
332
333
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

351
352
353
354
355
356
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
357
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
358
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
359
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
360
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
361
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
362
363
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
364
    if len(all_models) > 0:
365
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368
369
370
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
371
372
373
374
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
375
    """Check models defined in module are tested in test_file."""
376
    # XxxPreTrainedModel are not tested
377
378
379
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
380
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
400
    """Check all models are properly tested."""
401
402
403
404
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
405
406
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
407
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
408
409
410
411
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
412
413
414
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
415
416
417
418
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


419
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
420
    """Return the list of all models in at least one auto class."""
421
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
422
423
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
424
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
425
426
427
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
428
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
429
430
431
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
432
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
433
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
434
    return [cls for cls in result]
435
436


437
438
439
440
441
442
443
444
445
446
447
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


448
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
449
    """Check models defined in module are each in an auto class."""
450
451
452
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
453
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
454
455
456
457
458
459
460
461
462
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
463
    """Check all models are each in an auto class."""
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
485
486
487
488
489
490
491
492
493
494
495
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
496
497
498
499
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
500
    """Check that in the test file `filename` the slow decorator is always last."""
501
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
518
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
519
520
521
522
523
524
525
526
527
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
528
529
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
530
531
532
        )


533
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
534
    """Parse the content of all doc files to detect which classes and functions it documents"""
535
536
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
537
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
538
539
540
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
541
542
543
544
545
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
546
547
548
549
550
551
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
552
    "BartPretrainedModel",
553
554
    "DataCollator",
    "DataCollatorForSOP",
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
570
    "TFBartPretrainedModel",
571
572
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
573
    "Wav2Vec2ForMaskedLM",
574
    "Wav2Vec2Tokenizer",
575
576
577
578
579
580
581
582
583
584
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
585
586
    "TFTrainer",
    "TFTrainingArguments",
587
588
589
590
591
592
593
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
594
    "CharacterTokenizer",  # Internal, should never have been in the main init.
595
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
596
    "DummyObject",  # Just picked by mistake sometimes.
597
    "MecabTokenizer",  # Internal, should never have been in the main init.
598
599
600
601
602
603
604
605
606
607
608
609
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
610
    "requires_backends",  # Internal function
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
662
    """Check all models are properly documented."""
663
    documented_objs = find_all_documented_objects()
664
665
666
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
667
668
669
670
671
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
672
    check_docstrings_are_in_md()
673
674
675
676
677
678
679
680
681
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
682
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
728
        with open(file, encoding="utf-8") as f:
729
730
731
732
733
734
735
736
737
738
739
740
741
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
742
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
743
744
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
745
746


747
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
748
    """Check all models are properly tested and documented."""
749
750
    print("Checking all models are included.")
    check_model_list()
751
752
    print("Checking all models are public.")
    check_models_are_in_init()
753
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
754
    check_all_decorator_order()
755
    check_all_models_are_tested()
756
    print("Checking all objects are properly documented.")
757
    check_all_objects_are_documented()
758
759
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
760
761
762
763


if __name__ == "__main__":
    check_repo_quality()