check_repo.py 42.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
27
28
29
30
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
31
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
32

33
34
35
36
37

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
38
PATH_TO_DOC = "docs/source/en"
39

40
41
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
42
    "AltRobertaModel",
43
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
44
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
45
    "RealmBertModel",
46
    "T5Stack",
47
    "MT5Stack",
48
    "SwitchTransformersStack",
49
    "TFDPRSpanPredictor",
50
51
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
52
53
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
54
55
]

56
57
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
58
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
59
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
60
    "InstructBlipQFormerModel",  # Building part of bigger (tested) model.
61
62
    "NllbMoeDecoder",
    "NllbMoeEncoder",
Jason Phang's avatar
Jason Phang committed
63
    "LlamaDecoder",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
64
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
65
66
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
67
    "ErnieMForInformationExtraction",
68
69
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
70
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
71
72
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
73
74
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
75
76
    "InformerEncoder",  # Building part of bigger (tested) model.
    "InformerDecoder",  # Building part of bigger (tested) model.
77
78
    "AutoformerEncoder",  # Building part of bigger (tested) model.
    "AutoformerDecoder",  # Building part of bigger (tested) model.
79
80
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
81
82
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
83
    "OPTDecoder",  # Building part of bigger (tested) model.
84
85
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
86
87
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
88
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
89
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
90
91
92
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
93
94
95
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
96
97
98
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
99
100
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
101
102
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
103
    "MCTCTEncoder",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
104
    "MgpstrModel",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
105
106
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
107
108
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
109
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
110
    "BartEncoder",  # Building part of bigger (tested) model.
111
    "BertLMHeadModel",  # Needs to be setup as decoder.
112
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
113
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
114
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
115
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
116
    "MBartEncoder",  # Building part of bigger (tested) model.
117
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
118
119
120
121
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
122
123
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
124
    "PegasusEncoder",  # Building part of bigger (tested) model.
125
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
126
127
128
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
129
    "DPREncoder",  # Building part of bigger (tested) model.
130
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
131
132
133
134
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
135
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
136
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
137
    "TFDPREncoder",  # Building part of bigger (tested) model.
138
139
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
140
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
141
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
142
143
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
144
    "SeparableConv1D",  # Building part of bigger (tested) model.
145
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
146
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
147
    "OPTDecoderWrapper",
148
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
149
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
150
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
Matt's avatar
Matt committed
151
    "TFBlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
152
153
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
154
155
156
157
158
159
160
161
162
163
164
165
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
166
167
168
169
170
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
171
172
173
174
175
176
177
178
179
180
181
182
183
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
184
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
185
186
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
187
188
]

189
190
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
191
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
192
    # models to ignore for model xxx mapping
193
194
    "AlignTextModel",
    "AlignVisionModel",
195
196
197
198
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
199
200
201
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
202
    "ErnieMForInformationExtraction",
203
    "GitVisionModel",
204
205
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
206
207
208
209
210
211
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
Matt's avatar
Matt committed
212
213
214
215
216
217
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFBlipVisionModel",
    "TFBlipTextLMHeadModel",
    "TFBlipTextModel",
NielsRogge's avatar
NielsRogge committed
218
    "Swin2SRForImageSuperResolution",
219
220
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
221
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
222
223
224
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
225
    "EsmForProteinFolding",
226
    "GPTSanJapaneseModel",
227
    "TimeSeriesTransformerForPrediction",
228
    "InformerForPrediction",
229
    "AutoformerForPrediction",
230
231
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
232
233
234
235
236
237
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
238
    "SamModel",
NielsRogge's avatar
NielsRogge committed
239
    "DPTForDepthEstimation",
240
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
241
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
242
243
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
244
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
245
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
246
247
248
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
249
250
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
251
    "SegformerDecodeHead",
252
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
253
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
254
255
256
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
257
    "BeitForMaskedImageModeling",
258
259
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
260
    "CLIPTextModel",
261
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
262
    "CLIPVisionModel",
263
    "CLIPVisionModelWithProjection",
264
265
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
266
267
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
268
269
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
270
271
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
272
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
273
    "DetrForSegmentation",
Younes Belkada's avatar
Younes Belkada committed
274
275
276
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
277
    "ConditionalDetrForSegmentation",
278
279
    "DPRReader",
    "FlaubertForQuestionAnswering",
280
281
282
283
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
284
    "GPT2DoubleHeadsModel",
285
    "GPTSw3DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
286
287
    "InstructBlipVisionModel",
    "InstructBlipQFormerModel",
288
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
289
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
290
291
292
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
293
    "MgpstrModel",
294
    "OpenAIGPTDoubleHeadsModel",
295
296
297
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
298
299
300
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
301
302
303
304
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
305
    "TFDPRReader",
306
    "TFGPT2DoubleHeadsModel",
307
    "TFLayoutLMForQuestionAnswering",
308
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
309
310
311
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
312
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
313
    "HubertForCTC",
314
315
    "SEWForCTC",
    "SEWDForCTC",
316
317
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
318
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
319
320
321
322
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
323
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
324
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
325
326
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
327
328
329
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
330
    "TvltForAudioVisualClassification",
331
332
333
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
334
335
]

336
337
338
339
340
341
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
342
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
343
        ("donut-swin", "donut"),
344
345
346
347
    ]
)


348
# This is to make sure the transformers module imported is the one in the repo.
349
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
350
351


352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
def check_missing_backends():
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


376
377
378
379
380
381
382
383
384
385
386
387
388
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

389
    missing_models = sorted(set(_models).difference(models))
390
391
392
393
394
395
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


396
397
398
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
399
    """Get the model modules inside the transformers library."""
400
401
402
403
404
405
406
407
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
408
        "modeling_flax_auto",
409
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
410
        "modeling_flax_utils",
411
        "modeling_speech_encoder_decoder",
412
        "modeling_flax_speech_encoder_decoder",
413
        "modeling_flax_vision_encoder_decoder",
amyeroberts's avatar
amyeroberts committed
414
        "modeling_timm_backbone",
415
416
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
417
        "modeling_tf_encoder_decoder",
418
419
420
421
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
422
        "modeling_tf_vision_encoder_decoder",
423
        "modeling_vision_encoder_decoder",
424
425
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
426
427
428
429
430
431
432
433
434
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
435
436
437
    return modules


438
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
439
    """Get the objects in module that are models."""
440
    models = []
441
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
442
    for attr_name in dir(module):
443
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
444
445
446
447
448
449
450
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


451
452
453
454
455
456
457
458
459
460
461
462
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
463
464
    if model.endswith("Prenet"):
        return True
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


483
484
485
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
486
487
488
489
490
491
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

492
493
494
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
495
        "test_modeling_flax_encoder_decoder",
496
        "test_modeling_flax_speech_encoder_decoder",
497
498
        "test_modeling_marian",
        "test_modeling_tf_common",
499
        "test_modeling_tf_encoder_decoder",
500
501
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
502
503
504
505
506
507
508
509
510
511
512
513
514
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
515
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
516
517
518
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

519
520
521
522
523
524
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
525
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
526
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
527
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
528
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
529
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
530
531
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
532
    if len(all_models) > 0:
533
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
534
535
536
537
538
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
539
540
541
542
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
543
    """Check models defined in module are tested in test_file."""
544
    # XxxPreTrainedModel are not tested
545
546
547
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
548
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
568
    """Check all models are properly tested."""
569
570
571
572
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
573
574
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
575
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
576
577
578
579
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
580
581
582
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
583
584
585
586
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


587
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
588
    """Return the list of all models in at least one auto class."""
589
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
590
591
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
592
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
593
594
595
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
596
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
597
598
599
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
600
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
601
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
602
    return list(result)
603
604


605
606
607
608
609
610
611
612
613
614
615
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


616
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
617
    """Check models defined in module are each in an auto class."""
618
619
620
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
621
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
622
623
624
625
626
627
628
629
630
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
631
    """Check all models are each in an auto class."""
632
    check_missing_backends()
633
634
635
636
637
638
639
640
641
642
643
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


644
645
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
646
    check_missing_backends()
647

648
    failures = []
649
    mappings_to_check = {
650
651
652
653
654
655
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

656
657
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
658
659
660
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
661
662
663
664
665
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
685
686
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
687
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
688

689
    failures = []
Yih-Dar's avatar
Yih-Dar committed
690
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
691
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
692
693
694
695
696
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

697
698
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
699
700
701
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
702
703
704
705
706
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Yih-Dar's avatar
Yih-Dar committed
707
708
709
710
711
712
713
714
715
716
        for model_type, class_names in mapping.items():
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
def check_all_auto_mappings_importable():
    """Check all auto mappings could be imported."""
    check_missing_backends()

    failures = []
    mappings_to_check = {}
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, _ in mappings_to_check.items():
        name = name.replace("_MAPPING_NAMES", "_MAPPING")
        if not hasattr(transformers, name):
            failures.append(f"`{name}` should be defined in the main `__init__` file.")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
740
741
742
743
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
744
    """Check that in the test file `filename` the slow decorator is always last."""
745
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
762
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
763
764
765
766
767
768
769
770
771
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
772
773
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
774
775
776
        )


777
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
778
    """Parse the content of all doc files to detect which classes and functions it documents"""
779
780
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
781
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
782
783
784
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
785
    for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
Sylvain Gugger's avatar
Sylvain Gugger committed
786
787
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
788
        raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
789
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
790
791
792
793
794
795
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
796
    "BartPretrainedModel",
797
798
    "DataCollator",
    "DataCollatorForSOP",
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
814
    "TFBartPretrainedModel",
815
816
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
817
    "Wav2Vec2ForMaskedLM",
818
    "Wav2Vec2Tokenizer",
819
820
821
822
823
824
825
826
827
828
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
829
830
    "TFTrainer",
    "TFTrainingArguments",
831
832
833
834
835
836
837
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
838
    "CharacterTokenizer",  # Internal, should never have been in the main init.
839
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
840
    "DummyObject",  # Just picked by mistake sometimes.
841
    "MecabTokenizer",  # Internal, should never have been in the main init.
842
843
844
845
846
847
848
849
850
851
852
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
853
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
854
    "AltRobertaModel",  # Internal module
855
856
857
858
859
860
861
862
863
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
864
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
865
866
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
867
    "ConvNextV2Backbone",
868
    "DinatBackbone",
Alara Dirik's avatar
Alara Dirik committed
869
    "FocalNetBackbone",
NielsRogge's avatar
NielsRogge committed
870
    "MaskFormerSwinBackbone",
871
872
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
873
874
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
875
    "SwinBackbone",
amyeroberts's avatar
amyeroberts committed
876
877
    "TimmBackbone",
    "TimmBackboneConfig",
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
920
    """Check all models are properly documented."""
921
    documented_objs = find_all_documented_objects()
922
923
924
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
925
926
927
928
929
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
930
    check_docstrings_are_in_md()
931
932
933
934
935
936
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
937
    model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
938
939

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
940
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
986
        with open(file, encoding="utf-8") as f:
987
988
989
990
991
992
993
994
995
996
997
998
999
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
1000
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
1001
1002
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
1003
1004


1005
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
1006
    """Check all models are properly tested and documented."""
1007
1008
    print("Checking all models are included.")
    check_model_list()
1009
1010
    print("Checking all models are public.")
    check_models_are_in_init()
1011
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1012
    check_all_decorator_order()
1013
    check_all_models_are_tested()
1014
    print("Checking all objects are properly documented.")
1015
    check_all_objects_are_documented()
1016
1017
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
1018
1019
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
1020
1021
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
1022
1023
    print("Checking all auto mappings could be imported.")
    check_all_auto_mappings_importable()
1024
1025
1026
1027


if __name__ == "__main__":
    check_repo_quality()