check_repo.py 46.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
"""
Utility that performs several consistency checks on the repo. This includes:
- checking all models are properly defined in the __init__ of models/
- checking all models are in the main __init__
- checking all models are properly tested
- checking all object in the main __init__ are documented
- checking all models are in at least one auto class
- checking all the auto mapping are properly defined (no typos, importable)
- checking the list of deprecated models is up to date

Use from the root of the repo with (as used in `make repo-consistency`):

```bash
python utils/check_repo.py
```

It has no auto-fix mode.
"""
33
34
35
import inspect
import os
import re
36
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
37
import types
38
import warnings
39
from collections import OrderedDict
40
from difflib import get_close_matches
41
from pathlib import Path
Sylvain Gugger's avatar
Sylvain Gugger committed
42
from typing import List, Tuple
43

44
from transformers import is_flax_available, is_tf_available, is_torch_available
45
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
46
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
47
48
49
50
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
51
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
52

53
54
55
56
57

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
58
PATH_TO_DOC = "docs/source/en"
59

60
61
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
62
    "AltRobertaModel",
63
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
64
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
65
    "RealmBertModel",
66
    "T5Stack",
67
    "MT5Stack",
68
    "UMT5Stack",
Susnato Dhar's avatar
Susnato Dhar committed
69
    "Pop2PianoStack",
70
    "SwitchTransformersStack",
71
    "TFDPRSpanPredictor",
72
73
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
74
75
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
Yih-Dar's avatar
Yih-Dar committed
76
77
78
    "Kosmos2TextModel",
    "Kosmos2TextForCausalLM",
    "Kosmos2VisionModel",
Yoach Lacombe's avatar
Yoach Lacombe committed
79
80
81
    "SeamlessM4Tv2TextToUnitModel",
    "SeamlessM4Tv2CodeHifiGan",
    "SeamlessM4Tv2TextToUnitForConditionalGeneration",
82
83
]

84
85
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
86
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
87
    # models to ignore for not tested
Pablo Montalvo's avatar
Pablo Montalvo committed
88
    "FuyuForCausalLM",  # Not tested fort now
NielsRogge's avatar
NielsRogge committed
89
    "InstructBlipQFormerModel",  # Building part of bigger (tested) model.
90
    "UMT5EncoderModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
91
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
92
    "ErnieMForInformationExtraction",
93
94
    "FastSpeech2ConformerHifiGan",  # Already tested by SpeechT5HifiGan (# Copied from)
    "FastSpeech2ConformerWithHifiGan",  # Built with two smaller (tested) models.
95
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
96
97
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
98
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
99
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
100
    "MgpstrModel",  # Building part of bigger (tested) model.
101
    "BertLMHeadModel",  # Needs to be setup as decoder.
102
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
103
104
105
106
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
107
108
109
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
110
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
abhishek thakur's avatar
abhishek thakur committed
111
    "SeparableConv1D",  # Building part of bigger (tested) model.
112
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
113
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
114
    "OPTDecoderWrapper",
115
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
116
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
117
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
Matt's avatar
Matt committed
118
    "TFBlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
119
120
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
Yoach Lacombe's avatar
Yoach Lacombe committed
121
    "BarkCausalModel",  # Building part of bigger (tested) model.
jiqing-feng's avatar
jiqing-feng committed
122
    "BarkModel",  # Does not have a forward signature - generation tested with integration tests.
123
124
125
    "SeamlessM4TTextToUnitModel",  # Building part of bigger (tested) model.
    "SeamlessM4TCodeHifiGan",  # Building part of bigger (tested) model.
    "SeamlessM4TTextToUnitForConditionalGeneration",  # Building part of bigger (tested) model.
126
127
128
129
130
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
131
132
133
134
135
136
137
138
139
140
141
142
143
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
144
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
145
146
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
Yoach Lacombe's avatar
Yoach Lacombe committed
147
    "models/bark/test_modeling_bark.py",
148
149
]

150
151
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
152
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
153
    # models to ignore for model xxx mapping
154
155
    "AlignTextModel",
    "AlignVisionModel",
156
157
158
159
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
160
161
162
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
163
    "ErnieMForInformationExtraction",
164
165
    "FastSpeech2ConformerHifiGan",
    "FastSpeech2ConformerWithHifiGan",
166
    "GitVisionModel",
167
168
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
169
170
171
172
173
174
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
Jinho Park's avatar
Jinho Park committed
175
176
    "BrosSpadeEEForTokenClassification",
    "BrosSpadeELForTokenClassification",
Matt's avatar
Matt committed
177
178
179
180
181
182
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFBlipVisionModel",
    "TFBlipTextLMHeadModel",
    "TFBlipTextModel",
NielsRogge's avatar
NielsRogge committed
183
    "Swin2SRForImageSuperResolution",
184
185
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
186
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
187
188
189
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
190
    "EsmForProteinFolding",
191
    "GPTSanJapaneseModel",
192
    "TimeSeriesTransformerForPrediction",
193
    "InformerForPrediction",
194
    "AutoformerForPrediction",
195
196
    "PatchTSTForPretraining",
    "PatchTSTForPrediction",
197
198
    "JukeboxVQVAE",
    "JukeboxPrior",
199
    "SamModel",
NielsRogge's avatar
NielsRogge committed
200
    "DPTForDepthEstimation",
201
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
202
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
203
204
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
205
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
206
    "ViltForMaskedLM",
NielsRogge's avatar
NielsRogge committed
207
208
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
209
    "SegformerDecodeHead",
210
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
211
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
212
    "BeitForMaskedImageModeling",
213
214
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
215
    "CLIPTextModel",
216
217
    "CLIPTextModelWithProjection",
    "CLIPVisionModelWithProjection",
Susnato Dhar's avatar
Susnato Dhar committed
218
219
    "ClvpForCausalLM",
    "ClvpModel",
220
221
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
222
223
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
224
225
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
226
    "FlaxCLIPTextModel",
227
    "FlaxCLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
228
    "FlaxCLIPVisionModel",
229
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
230
    "DetrForSegmentation",
Younes Belkada's avatar
Younes Belkada committed
231
232
233
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
234
    "ConditionalDetrForSegmentation",
235
236
    "DPRReader",
    "FlaubertForQuestionAnswering",
237
238
239
240
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
241
    "GPT2DoubleHeadsModel",
242
    "GPTSw3DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
243
244
    "InstructBlipVisionModel",
    "InstructBlipQFormerModel",
245
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
246
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
247
248
249
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
250
    "MgpstrModel",
251
    "OpenAIGPTDoubleHeadsModel",
252
253
    "OwlViTTextModel",
    "OwlViTVisionModel",
NielsRogge's avatar
NielsRogge committed
254
255
    "Owlv2TextModel",
    "Owlv2VisionModel",
256
    "OwlViTForObjectDetection",
257
258
    "PatchTSMixerForPrediction",
    "PatchTSMixerForPretraining",
259
260
261
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
262
263
264
265
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
266
    "TFDPRReader",
267
    "TFGPT2DoubleHeadsModel",
268
    "TFLayoutLMForQuestionAnswering",
269
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
270
271
272
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
273
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
274
    "HubertForCTC",
275
276
    "SEWForCTC",
    "SEWDForCTC",
277
278
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
279
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
280
281
282
283
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
284
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
285
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
286
287
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
288
289
290
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
291
    "TvltForAudioVisualClassification",
Yoach Lacombe's avatar
Yoach Lacombe committed
292
293
294
295
296
297
    "BarkCausalModel",
    "BarkCoarseModel",
    "BarkFineModel",
    "BarkSemanticModel",
    "MusicgenModel",
    "MusicgenForConditionalGeneration",
298
299
300
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
NielsRogge's avatar
NielsRogge committed
301
    "VitMatteForImageMatting",
302
303
304
305
    "SeamlessM4TTextToUnitModel",
    "SeamlessM4TTextToUnitForConditionalGeneration",
    "SeamlessM4TCodeHifiGan",
    "SeamlessM4TForSpeechToSpeech",  # no auto class for speech-to-speech
jiqing-feng's avatar
jiqing-feng committed
306
    "TvpForVideoGrounding",
Yoach Lacombe's avatar
Yoach Lacombe committed
307
308
309
310
    "SeamlessM4Tv2NARTextToUnitModel",
    "SeamlessM4Tv2NARTextToUnitForConditionalGeneration",
    "SeamlessM4Tv2CodeHifiGan",
    "SeamlessM4Tv2ForSpeechToSpeech",  # no auto class for speech-to-speech
Eduardo Pacheco's avatar
Eduardo Pacheco committed
311
    "SegGptForImageSegmentation",
NielsRogge's avatar
NielsRogge committed
312
313
    "SiglipVisionModel",
    "SiglipTextModel",
314
315
]

316
# DO NOT edit this list!
Sylvain Gugger's avatar
Sylvain Gugger committed
317
# (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove)
318
319
320
321
322
323
324
325
326
327
328
329
330
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
    "FlaxBertLayer",
    "FlaxBigBirdLayer",
    "FlaxRoFormerLayer",
    "TFBertLayer",
    "TFLxmertEncoder",
    "TFLxmertXLayer",
    "TFMPNetLayer",
    "TFMobileBertLayer",
    "TFSegformerLayer",
    "TFViTMAELayer",
]

Sylvain Gugger's avatar
Sylvain Gugger committed
331
# Update this list for models that have multiple model types for the same model doc.
332
333
334
335
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
336
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
337
        ("donut-swin", "donut"),
338
339
340
341
    ]
)


342
# This is to make sure the transformers module imported is the one in the repo.
343
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
344
345


346
def check_missing_backends():
Sylvain Gugger's avatar
Sylvain Gugger committed
347
348
349
350
    """
    Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if
    that's not the case but only throw a warning for users running this.
    """
351
352
353
354
355
356
357
358
359
360
361
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
362
                "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
363
364
365
366
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
367
                "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
368
369
370
371
372
373
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


374
def check_model_list():
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
    """
    Checks the model listed as subfolders of `models` match the models available in `transformers.models`.
    """
378
379
380
381
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
        if model == "deprecated":
            continue
384
385
386
387
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

Sylvain Gugger's avatar
Sylvain Gugger committed
388
    # Get the models in the submodule `transformers.models`
389
390
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

391
    missing_models = sorted(set(_models).difference(models))
392
393
394
395
396
397
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


398
399
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
Sylvain Gugger's avatar
Sylvain Gugger committed
400
401
def get_model_modules() -> List[str]:
    """Get all the model modules inside the transformers library (except deprecated models)."""
402
403
404
405
406
407
408
409
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
410
        "modeling_flax_auto",
411
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
412
        "modeling_flax_utils",
413
        "modeling_speech_encoder_decoder",
414
        "modeling_flax_speech_encoder_decoder",
415
        "modeling_flax_vision_encoder_decoder",
amyeroberts's avatar
amyeroberts committed
416
        "modeling_timm_backbone",
417
        "modeling_tf_auto",
418
        "modeling_tf_encoder_decoder",
419
420
421
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
422
        "modeling_tf_vision_encoder_decoder",
423
        "modeling_vision_encoder_decoder",
424
425
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
426
427
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
Sylvain Gugger's avatar
Sylvain Gugger committed
428
429
430
431
432
433
434
435
436
        if model == "deprecated" or model.startswith("__"):
            continue

        model_module = getattr(transformers.models, model)
        for submodule in dir(model_module):
            if submodule.startswith("modeling") and submodule not in _ignore_modules:
                modeling_module = getattr(model_module, submodule)
                if inspect.ismodule(modeling_module):
                    modules.append(modeling_module)
437
438
439
    return modules


Sylvain Gugger's avatar
Sylvain Gugger committed
440
441
442
443
444
445
446
447
448
449
450
451
452
def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]:
    """
    Get the objects in a module that are models.

    Args:
        module (`types.ModuleType`):
            The module from which we are extracting models.
        include_pretrained (`bool`, *optional*, defaults to `False`):
            Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not.

    Returns:
        List[Tuple[str, type]]: List of models as tuples (class name, actual class).
    """
453
    models = []
454
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
455
    for attr_name in dir(module):
456
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
457
458
459
460
461
462
463
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


Sylvain Gugger's avatar
Sylvain Gugger committed
464
465
466
467
def is_building_block(model: str) -> bool:
    """
    Returns `True` if a model is a building block part of a bigger model.
    """
468
469
470
471
472
473
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
474
475
    if model.endswith("Prenet"):
        return True
Sylvain Gugger's avatar
Sylvain Gugger committed
476
477
478
479
480
481
482


def is_a_private_model(model: str) -> bool:
    """Returns `True` if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True
    return is_building_block(model)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


500
501
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
def get_model_test_files() -> List[str]:
    """
    Get the model test files.
Yih-Dar's avatar
Yih-Dar committed
505

Sylvain Gugger's avatar
Sylvain Gugger committed
506
507
508
509
    Returns:
        `List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS`
        defined in this script). They will be considered as paths relative to `tests`. A caller has to use
        `os.path.join(PATH_TO_TESTS, ...)` to access the files.
Yih-Dar's avatar
Yih-Dar committed
510
511
    """

512
513
514
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
515
        "test_modeling_flax_encoder_decoder",
516
        "test_modeling_flax_speech_encoder_decoder",
517
518
        "test_modeling_marian",
        "test_modeling_tf_common",
519
        "test_modeling_tf_encoder_decoder",
520
521
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
522
523
524
525
526
527
528
529
530
531
532
533
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
534
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
535
536
537
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

538
539
540
541
542
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
Sylvain Gugger's avatar
Sylvain Gugger committed
543
544
545
546
547
548
549
550
551
552
553
def find_tested_models(test_file: str) -> List[str]:
    """
    Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from
    the common test class.

    Args:
        test_file (`str`): The path to the test file to check

    Returns:
        `List[str]`: The list of models tested in that file.
    """
554
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
555
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
556
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
557
558
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
559
    if len(all_models) > 0:
560
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
561
562
563
564
565
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
566
567
568
        return model_tested


Sylvain Gugger's avatar
Sylvain Gugger committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def should_be_tested(model_name: str) -> bool:
    """
    Whether or not a model should be tested.
    """
    if model_name in IGNORE_NON_TESTED:
        return False
    return not is_building_block(model_name)


def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]:
    """Check models defined in a module are all tested in a given file.

    Args:
        module (`types.ModuleType`): The module in which we get the models.
        test_file (`str`): The path to the file where the module is tested.

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
588
    # XxxPreTrainedModel are not tested
589
590
591
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
592
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
593
594
595
596
597
598
599
600
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
Sylvain Gugger's avatar
Sylvain Gugger committed
601
        if model_name not in tested_models and should_be_tested(model_name):
602
603
604
605
606
607
608
609
610
611
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
612
    """Check all models are properly tested."""
613
614
615
616
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
617
        # Matches a module to its test file.
618
619
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
620
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
621
622
623
624
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
625
626
627
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
628
629
630
631
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
632
def get_all_auto_configured_models() -> List[str]:
Patrick von Platen's avatar
Patrick von Platen committed
633
    """Return the list of all models in at least one auto class."""
634
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
635
636
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
637
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
638
639
640
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
641
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
642
643
644
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
645
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
646
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
647
    return list(result)
648
649


Sylvain Gugger's avatar
Sylvain Gugger committed
650
651
def ignore_unautoclassed(model_name: str) -> bool:
    """Rules to determine if a model should be in an auto class."""
652
653
654
655
656
657
658
659
660
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


Sylvain Gugger's avatar
Sylvain Gugger committed
661
662
663
664
665
666
667
668
669
670
671
672
673
def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]:
    """
    Check models defined in module are each in an auto class.

    Args:
        module (`types.ModuleType`):
            The module in which we get the models.
        all_auto_models (`List[str]`):
            The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`).

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
674
675
676
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
677
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
678
679
680
681
682
683
684
685
686
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
687
    """Check all models are each in an auto class."""
Sylvain Gugger's avatar
Sylvain Gugger committed
688
    # This is where we need to check we have all backends or the check is incomplete.
689
    check_missing_backends()
690
691
692
693
694
695
696
697
698
699
700
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


701
702
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
Sylvain Gugger's avatar
Sylvain Gugger committed
703
    # This is where we need to check we have all backends or the check is incomplete.
704
    check_missing_backends()
705

706
    failures = []
707
    mappings_to_check = {
708
709
710
711
712
713
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

714
715
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
716
717
718
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
719
720
721
722
723
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
724
        for _, class_names in mapping.items():
725
726
727
728
729
730
731
732
733
734
735
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
736
737
                        if name.endswith("MODEL_FOR_IMAGE_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
738
739
740
741
742
743
744
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
745
746
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
Sylvain Gugger's avatar
Sylvain Gugger committed
747
    # This is where we need to check we have all backends or the check is incomplete.
748
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
749

750
    failures = []
Yih-Dar's avatar
Yih-Dar committed
751
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
752
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
753
754
755
756
757
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

758
759
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
760
761
762
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
763
764
765
766
767
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
768
        for model_type in mapping:
Yih-Dar's avatar
Yih-Dar committed
769
770
771
772
773
774
775
776
777
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


778
def check_all_auto_mappings_importable():
Sylvain Gugger's avatar
Sylvain Gugger committed
779
780
    """Check all auto mappings can be imported."""
    # This is where we need to check we have all backends or the check is incomplete.
781
782
783
784
785
786
787
788
789
790
791
792
793
    check_missing_backends()

    failures = []
    mappings_to_check = {}
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

Sylvain Gugger's avatar
Sylvain Gugger committed
794
    for name in mappings_to_check:
795
796
        name = name.replace("_MAPPING_NAMES", "_MAPPING")
        if not hasattr(transformers, name):
797
798
799
800
801
802
            failures.append(f"`{name}`")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_objects_being_equally_in_main_init():
Sylvain Gugger's avatar
Sylvain Gugger committed
803
804
805
    """
    Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is.
    """
806
807
808
809
810
    attrs = dir(transformers)

    failures = []
    for attr in attrs:
        obj = getattr(transformers, attr)
Sylvain Gugger's avatar
Sylvain Gugger committed
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
        if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__:
            continue

        module_path = obj.__module__
        module_name = module_path.split(".")[-1]
        module_dir = ".".join(module_path.split(".")[:-1])
        if (
            module_name.startswith("modeling_")
            and not module_name.startswith("modeling_tf_")
            and not module_name.startswith("modeling_flax_")
        ):
            parent_module = sys.modules[module_dir]

            frameworks = []
            if is_tf_available():
                frameworks.append("TF")
            if is_flax_available():
                frameworks.append("Flax")

            for framework in frameworks:
                other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
                if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
                    other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
                    other_module = getattr(parent_module, other_module_name)
                    if hasattr(other_module, f"{framework}{attr}"):
                        if not hasattr(transformers, f"{framework}{attr}"):
                            if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}{attr}")
                    if hasattr(other_module, f"{framework}_{attr}"):
                        if not hasattr(transformers, f"{framework}_{attr}"):
                            if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}_{attr}")
843
844
845
846
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
847
848
849
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


Sylvain Gugger's avatar
Sylvain Gugger committed
850
851
852
853
854
855
856
857
858
859
def check_decorator_order(filename: str) -> List[int]:
    """
    Check that in a given test file, the slow decorator is always last.

    Args:
        filename (`str`): The path to a test file to check.

    Returns:
        `List[int]`: The list of failures as a list of indices where there are problems.
    """
860
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
877
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
878
879
880
881
882
883
884
885
886
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
887
888
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
889
890
891
        )


Sylvain Gugger's avatar
Sylvain Gugger committed
892
893
894
895
896
897
898
def find_all_documented_objects() -> List[str]:
    """
    Parse the content of all doc files to detect which classes and functions it documents.

    Returns:
        `List[str]`: The list of all object names being documented.
    """
899
900
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
901
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
902
903
904
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
905
    for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
Sylvain Gugger's avatar
Sylvain Gugger committed
906
907
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
908
        raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
909
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
910
911
912
913
914
915
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
916
    "BartPretrainedModel",
917
918
    "DataCollator",
    "DataCollatorForSOP",
919
920
921
922
923
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
Steven Liu's avatar
Steven Liu committed
924
    "NerPipeline",
925
926
927
928
929
930
931
932
933
934
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
935
    "TFBartPretrainedModel",
936
937
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
938
    "Wav2Vec2ForMaskedLM",
939
    "Wav2Vec2Tokenizer",
940
941
942
943
944
945
946
947
948
949
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
950
    "TFTrainingArguments",
951
952
953
954
955
956
957
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
958
    "CharacterTokenizer",  # Internal, should never have been in the main init.
959
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
960
    "DummyObject",  # Just picked by mistake sometimes.
961
    "MecabTokenizer",  # Internal, should never have been in the main init.
962
963
964
965
966
967
968
969
970
971
972
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
973
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
974
    "AltRobertaModel",  # Internal module
975
976
977
978
979
980
981
982
983
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
984
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
985
    "BeitBackbone",
NielsRogge's avatar
NielsRogge committed
986
987
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
988
    "ConvNextV2Backbone",
989
    "DinatBackbone",
990
    "Dinov2Backbone",
Alara Dirik's avatar
Alara Dirik committed
991
    "FocalNetBackbone",
NielsRogge's avatar
NielsRogge committed
992
    "MaskFormerSwinBackbone",
993
994
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
995
996
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
997
    "SwinBackbone",
NielsRogge's avatar
NielsRogge committed
998
    "Swinv2Backbone",
amyeroberts's avatar
amyeroberts committed
999
1000
    "TimmBackbone",
    "TimmBackboneConfig",
NielsRogge's avatar
NielsRogge committed
1001
    "VitDetBackbone",
1002
1003
1004
]


Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
def ignore_undocumented(name: str) -> bool:
    """Rules to determine if `name` should be undocumented (returns `True` if it should not be documented)."""
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
1044
    """Check all models are properly documented."""
1045
    documented_objs = find_all_documented_objects()
1046
1047
1048
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
1049
1050
1051
1052
1053
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
1054
    check_docstrings_are_in_md()
1055
1056
1057
1058
1059
1060
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
1061
    model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
1062
1063

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
1064
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


Sylvain Gugger's avatar
Sylvain Gugger committed
1093
def is_rst_docstring(docstring: str) -> True:
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
Sylvain Gugger's avatar
Sylvain Gugger committed
1107
    """Check all docstrings are written in md and nor rst."""
1108
1109
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
1110
        with open(file, encoding="utf-8") as f:
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
1124
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
1125
1126
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
1127
1128


1129
def check_deprecated_constant_is_up_to_date():
Sylvain Gugger's avatar
Sylvain Gugger committed
1130
1131
1132
    """
    Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date.
    """
1133
1134
1135
1136
1137
1138
1139
1140
1141
    deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated")
    deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")]

    constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS
    message = []
    missing_models = sorted(set(deprecated_models) - set(constant_to_check))
    if len(missing_models) != 0:
        missing_models = ", ".join(missing_models)
        message.append(
1142
            "The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in "
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
            f"`models/auto/configuration_auto.py`: {missing_models}."
        )

    extra_models = sorted(set(constant_to_check) - set(deprecated_models))
    if len(extra_models) != 0:
        extra_models = ", ".join(extra_models)
        message.append(
            "The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either "
            f"remove them from the constant or move to the deprecated folder: {extra_models}."
        )

    if len(message) > 0:
        raise Exception("\n".join(message))


1158
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
1159
    """Check all models are properly tested and documented."""
1160
1161
    print("Checking all models are included.")
    check_model_list()
1162
1163
    print("Checking all models are public.")
    check_models_are_in_init()
1164
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1165
    check_all_decorator_order()
1166
    check_all_models_are_tested()
1167
    print("Checking all objects are properly documented.")
1168
    check_all_objects_are_documented()
1169
1170
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
1171
1172
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
1173
1174
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
1175
1176
    print("Checking all auto mappings could be imported.")
    check_all_auto_mappings_importable()
1177
1178
    print("Checking all objects are equally (across frameworks) in the main __init__.")
    check_objects_being_equally_in_main_init()
1179
1180
    print("Checking the DEPRECATED_MODELS constant is up to date.")
    check_deprecated_constant_is_up_to_date()
1181
1182
1183
1184


if __name__ == "__main__":
    check_repo_quality()