check_repo.py 46.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
"""
Utility that performs several consistency checks on the repo. This includes:
- checking all models are properly defined in the __init__ of models/
- checking all models are in the main __init__
- checking all models are properly tested
- checking all object in the main __init__ are documented
- checking all models are in at least one auto class
- checking all the auto mapping are properly defined (no typos, importable)
- checking the list of deprecated models is up to date

Use from the root of the repo with (as used in `make repo-consistency`):

```bash
python utils/check_repo.py
```

It has no auto-fix mode.
"""
33
34
35
import inspect
import os
import re
36
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
37
import types
38
import warnings
39
from collections import OrderedDict
40
from difflib import get_close_matches
41
from pathlib import Path
Sylvain Gugger's avatar
Sylvain Gugger committed
42
from typing import List, Tuple
43

44
from transformers import is_flax_available, is_tf_available, is_torch_available
45
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
46
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
47
48
49
50
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
51
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
52

53
54
55
56
57

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
58
PATH_TO_DOC = "docs/source/en"
59

60
61
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
62
    "AltRobertaModel",
63
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
64
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
65
    "RealmBertModel",
66
    "T5Stack",
67
    "MT5Stack",
68
    "UMT5Stack",
Susnato Dhar's avatar
Susnato Dhar committed
69
    "Pop2PianoStack",
70
    "SwitchTransformersStack",
71
    "TFDPRSpanPredictor",
72
73
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
74
75
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
Yih-Dar's avatar
Yih-Dar committed
76
77
78
    "Kosmos2TextModel",
    "Kosmos2TextForCausalLM",
    "Kosmos2VisionModel",
Yoach Lacombe's avatar
Yoach Lacombe committed
79
80
81
    "SeamlessM4Tv2TextToUnitModel",
    "SeamlessM4Tv2CodeHifiGan",
    "SeamlessM4Tv2TextToUnitForConditionalGeneration",
82
83
]

84
85
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
86
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
87
    # models to ignore for not tested
Pablo Montalvo's avatar
Pablo Montalvo committed
88
    "FuyuForCausalLM",  # Not tested fort now
NielsRogge's avatar
NielsRogge committed
89
    "InstructBlipQFormerModel",  # Building part of bigger (tested) model.
90
    "UMT5EncoderModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
91
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
92
    "ErnieMForInformationExtraction",
93
94
    "FastSpeech2ConformerHifiGan",  # Already tested by SpeechT5HifiGan (# Copied from)
    "FastSpeech2ConformerWithHifiGan",  # Built with two smaller (tested) models.
95
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
96
97
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
98
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
99
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
100
    "MgpstrModel",  # Building part of bigger (tested) model.
101
    "BertLMHeadModel",  # Needs to be setup as decoder.
102
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
103
104
105
106
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
107
108
109
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
110
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
abhishek thakur's avatar
abhishek thakur committed
111
    "SeparableConv1D",  # Building part of bigger (tested) model.
112
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
113
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
114
    "OPTDecoderWrapper",
115
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
116
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
117
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
Matt's avatar
Matt committed
118
    "TFBlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
119
120
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
Yoach Lacombe's avatar
Yoach Lacombe committed
121
    "BarkCausalModel",  # Building part of bigger (tested) model.
jiqing-feng's avatar
jiqing-feng committed
122
    "BarkModel",  # Does not have a forward signature - generation tested with integration tests.
123
124
125
    "SeamlessM4TTextToUnitModel",  # Building part of bigger (tested) model.
    "SeamlessM4TCodeHifiGan",  # Building part of bigger (tested) model.
    "SeamlessM4TTextToUnitForConditionalGeneration",  # Building part of bigger (tested) model.
126
127
128
129
130
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
131
132
133
134
135
136
137
138
139
140
141
142
143
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
144
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
145
146
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
Yoach Lacombe's avatar
Yoach Lacombe committed
147
    "models/bark/test_modeling_bark.py",
148
149
]

150
151
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
152
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
153
    # models to ignore for model xxx mapping
154
155
    "AlignTextModel",
    "AlignVisionModel",
156
157
158
159
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
160
161
162
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
163
    "ErnieMForInformationExtraction",
164
165
    "FastSpeech2ConformerHifiGan",
    "FastSpeech2ConformerWithHifiGan",
166
    "GitVisionModel",
167
168
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
169
170
171
172
173
174
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
Jinho Park's avatar
Jinho Park committed
175
176
    "BrosSpadeEEForTokenClassification",
    "BrosSpadeELForTokenClassification",
Matt's avatar
Matt committed
177
178
179
180
181
182
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFBlipVisionModel",
    "TFBlipTextLMHeadModel",
    "TFBlipTextModel",
NielsRogge's avatar
NielsRogge committed
183
    "Swin2SRForImageSuperResolution",
184
185
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
186
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
187
188
189
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
190
    "EsmForProteinFolding",
191
    "GPTSanJapaneseModel",
192
    "TimeSeriesTransformerForPrediction",
193
    "InformerForPrediction",
194
    "AutoformerForPrediction",
195
196
    "PatchTSTForPretraining",
    "PatchTSTForPrediction",
197
198
    "JukeboxVQVAE",
    "JukeboxPrior",
199
    "SamModel",
NielsRogge's avatar
NielsRogge committed
200
    "DPTForDepthEstimation",
201
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
202
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
203
204
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
205
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
206
    "ViltForMaskedLM",
NielsRogge's avatar
NielsRogge committed
207
208
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
209
    "SegformerDecodeHead",
210
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
211
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
212
    "BeitForMaskedImageModeling",
213
214
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
215
    "CLIPTextModel",
216
217
    "CLIPTextModelWithProjection",
    "CLIPVisionModelWithProjection",
Susnato Dhar's avatar
Susnato Dhar committed
218
219
    "ClvpForCausalLM",
    "ClvpModel",
220
221
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
222
223
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
224
225
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
226
    "FlaxCLIPTextModel",
227
    "FlaxCLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
228
    "FlaxCLIPVisionModel",
229
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
230
    "DetrForSegmentation",
Younes Belkada's avatar
Younes Belkada committed
231
232
233
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
234
    "ConditionalDetrForSegmentation",
235
236
    "DPRReader",
    "FlaubertForQuestionAnswering",
237
238
239
240
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
241
    "GPT2DoubleHeadsModel",
242
    "GPTSw3DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
243
244
    "InstructBlipVisionModel",
    "InstructBlipQFormerModel",
245
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
246
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
247
248
249
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
250
    "MgpstrModel",
251
    "OpenAIGPTDoubleHeadsModel",
252
253
    "OwlViTTextModel",
    "OwlViTVisionModel",
NielsRogge's avatar
NielsRogge committed
254
255
    "Owlv2TextModel",
    "Owlv2VisionModel",
256
    "OwlViTForObjectDetection",
257
258
    "PatchTSMixerForPrediction",
    "PatchTSMixerForPretraining",
259
260
261
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
262
263
264
265
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
266
    "TFDPRReader",
267
    "TFGPT2DoubleHeadsModel",
268
    "TFLayoutLMForQuestionAnswering",
269
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
270
271
272
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
273
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
274
    "HubertForCTC",
275
276
    "SEWForCTC",
    "SEWDForCTC",
277
278
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
279
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
280
281
282
283
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
284
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
285
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
286
287
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
288
289
290
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
291
    "TvltForAudioVisualClassification",
Yoach Lacombe's avatar
Yoach Lacombe committed
292
293
294
295
296
297
    "BarkCausalModel",
    "BarkCoarseModel",
    "BarkFineModel",
    "BarkSemanticModel",
    "MusicgenModel",
    "MusicgenForConditionalGeneration",
298
299
300
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
NielsRogge's avatar
NielsRogge committed
301
    "VitMatteForImageMatting",
302
303
304
305
    "SeamlessM4TTextToUnitModel",
    "SeamlessM4TTextToUnitForConditionalGeneration",
    "SeamlessM4TCodeHifiGan",
    "SeamlessM4TForSpeechToSpeech",  # no auto class for speech-to-speech
jiqing-feng's avatar
jiqing-feng committed
306
    "TvpForVideoGrounding",
Yoach Lacombe's avatar
Yoach Lacombe committed
307
308
309
310
    "SeamlessM4Tv2NARTextToUnitModel",
    "SeamlessM4Tv2NARTextToUnitForConditionalGeneration",
    "SeamlessM4Tv2CodeHifiGan",
    "SeamlessM4Tv2ForSpeechToSpeech",  # no auto class for speech-to-speech
NielsRogge's avatar
NielsRogge committed
311
312
    "SiglipVisionModel",
    "SiglipTextModel",
313
314
]

315
# DO NOT edit this list!
Sylvain Gugger's avatar
Sylvain Gugger committed
316
# (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove)
317
318
319
320
321
322
323
324
325
326
327
328
329
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
    "FlaxBertLayer",
    "FlaxBigBirdLayer",
    "FlaxRoFormerLayer",
    "TFBertLayer",
    "TFLxmertEncoder",
    "TFLxmertXLayer",
    "TFMPNetLayer",
    "TFMobileBertLayer",
    "TFSegformerLayer",
    "TFViTMAELayer",
]

Sylvain Gugger's avatar
Sylvain Gugger committed
330
# Update this list for models that have multiple model types for the same model doc.
331
332
333
334
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
335
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
336
        ("donut-swin", "donut"),
337
338
339
340
    ]
)


341
# This is to make sure the transformers module imported is the one in the repo.
342
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
343
344


345
def check_missing_backends():
Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
348
349
    """
    Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if
    that's not the case but only throw a warning for users running this.
    """
350
351
352
353
354
355
356
357
358
359
360
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
361
                "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
362
363
364
365
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
366
                "Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
367
368
369
370
371
372
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


373
def check_model_list():
Sylvain Gugger's avatar
Sylvain Gugger committed
374
375
376
    """
    Checks the model listed as subfolders of `models` match the models available in `transformers.models`.
    """
377
378
379
380
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
Sylvain Gugger's avatar
Sylvain Gugger committed
381
382
        if model == "deprecated":
            continue
383
384
385
386
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

Sylvain Gugger's avatar
Sylvain Gugger committed
387
    # Get the models in the submodule `transformers.models`
388
389
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

390
    missing_models = sorted(set(_models).difference(models))
391
392
393
394
395
396
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


397
398
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
Sylvain Gugger's avatar
Sylvain Gugger committed
399
400
def get_model_modules() -> List[str]:
    """Get all the model modules inside the transformers library (except deprecated models)."""
401
402
403
404
405
406
407
408
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
409
        "modeling_flax_auto",
410
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
411
        "modeling_flax_utils",
412
        "modeling_speech_encoder_decoder",
413
        "modeling_flax_speech_encoder_decoder",
414
        "modeling_flax_vision_encoder_decoder",
amyeroberts's avatar
amyeroberts committed
415
        "modeling_timm_backbone",
416
        "modeling_tf_auto",
417
        "modeling_tf_encoder_decoder",
418
419
420
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
421
        "modeling_tf_vision_encoder_decoder",
422
        "modeling_vision_encoder_decoder",
423
424
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
Sylvain Gugger's avatar
Sylvain Gugger committed
427
428
429
430
431
432
433
434
435
        if model == "deprecated" or model.startswith("__"):
            continue

        model_module = getattr(transformers.models, model)
        for submodule in dir(model_module):
            if submodule.startswith("modeling") and submodule not in _ignore_modules:
                modeling_module = getattr(model_module, submodule)
                if inspect.ismodule(modeling_module):
                    modules.append(modeling_module)
436
437
438
    return modules


Sylvain Gugger's avatar
Sylvain Gugger committed
439
440
441
442
443
444
445
446
447
448
449
450
451
def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]:
    """
    Get the objects in a module that are models.

    Args:
        module (`types.ModuleType`):
            The module from which we are extracting models.
        include_pretrained (`bool`, *optional*, defaults to `False`):
            Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not.

    Returns:
        List[Tuple[str, type]]: List of models as tuples (class name, actual class).
    """
452
    models = []
453
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
454
    for attr_name in dir(module):
455
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
456
457
458
459
460
461
462
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
465
466
def is_building_block(model: str) -> bool:
    """
    Returns `True` if a model is a building block part of a bigger model.
    """
467
468
469
470
471
472
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
473
474
    if model.endswith("Prenet"):
        return True
Sylvain Gugger's avatar
Sylvain Gugger committed
475
476
477
478
479
480
481


def is_a_private_model(model: str) -> bool:
    """Returns `True` if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True
    return is_building_block(model)
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


499
500
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503
def get_model_test_files() -> List[str]:
    """
    Get the model test files.
Yih-Dar's avatar
Yih-Dar committed
504

Sylvain Gugger's avatar
Sylvain Gugger committed
505
506
507
508
    Returns:
        `List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS`
        defined in this script). They will be considered as paths relative to `tests`. A caller has to use
        `os.path.join(PATH_TO_TESTS, ...)` to access the files.
Yih-Dar's avatar
Yih-Dar committed
509
510
    """

511
512
513
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
514
        "test_modeling_flax_encoder_decoder",
515
        "test_modeling_flax_speech_encoder_decoder",
516
517
        "test_modeling_marian",
        "test_modeling_tf_common",
518
        "test_modeling_tf_encoder_decoder",
519
520
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
521
522
523
524
525
526
527
528
529
530
531
532
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
533
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
534
535
536
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

537
538
539
540
541
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
544
545
546
547
548
549
550
551
552
def find_tested_models(test_file: str) -> List[str]:
    """
    Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from
    the common test class.

    Args:
        test_file (`str`): The path to the test file to check

    Returns:
        `List[str]`: The list of models tested in that file.
    """
553
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
554
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
555
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
556
557
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
558
    if len(all_models) > 0:
559
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
560
561
562
563
564
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
565
566
567
        return model_tested


Sylvain Gugger's avatar
Sylvain Gugger committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def should_be_tested(model_name: str) -> bool:
    """
    Whether or not a model should be tested.
    """
    if model_name in IGNORE_NON_TESTED:
        return False
    return not is_building_block(model_name)


def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]:
    """Check models defined in a module are all tested in a given file.

    Args:
        module (`types.ModuleType`): The module in which we get the models.
        test_file (`str`): The path to the file where the module is tested.

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
587
    # XxxPreTrainedModel are not tested
588
589
590
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
591
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
592
593
594
595
596
597
598
599
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
Sylvain Gugger's avatar
Sylvain Gugger committed
600
        if model_name not in tested_models and should_be_tested(model_name):
601
602
603
604
605
606
607
608
609
610
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
611
    """Check all models are properly tested."""
612
613
614
615
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
616
        # Matches a module to its test file.
617
618
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
619
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
620
621
622
623
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
624
625
626
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
627
628
629
630
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
631
def get_all_auto_configured_models() -> List[str]:
Patrick von Platen's avatar
Patrick von Platen committed
632
    """Return the list of all models in at least one auto class."""
633
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
634
635
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
636
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
637
638
639
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
640
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
641
642
643
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
644
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
645
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
646
    return list(result)
647
648


Sylvain Gugger's avatar
Sylvain Gugger committed
649
650
def ignore_unautoclassed(model_name: str) -> bool:
    """Rules to determine if a model should be in an auto class."""
651
652
653
654
655
656
657
658
659
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


Sylvain Gugger's avatar
Sylvain Gugger committed
660
661
662
663
664
665
666
667
668
669
670
671
672
def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]:
    """
    Check models defined in module are each in an auto class.

    Args:
        module (`types.ModuleType`):
            The module in which we get the models.
        all_auto_models (`List[str]`):
            The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`).

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
673
674
675
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
676
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
677
678
679
680
681
682
683
684
685
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
686
    """Check all models are each in an auto class."""
Sylvain Gugger's avatar
Sylvain Gugger committed
687
    # This is where we need to check we have all backends or the check is incomplete.
688
    check_missing_backends()
689
690
691
692
693
694
695
696
697
698
699
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


700
701
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
Sylvain Gugger's avatar
Sylvain Gugger committed
702
    # This is where we need to check we have all backends or the check is incomplete.
703
    check_missing_backends()
704

705
    failures = []
706
    mappings_to_check = {
707
708
709
710
711
712
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

713
714
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
715
716
717
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
718
719
720
721
722
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
723
        for _, class_names in mapping.items():
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
742
743
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
Sylvain Gugger's avatar
Sylvain Gugger committed
744
    # This is where we need to check we have all backends or the check is incomplete.
745
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
746

747
    failures = []
Yih-Dar's avatar
Yih-Dar committed
748
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
749
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
750
751
752
753
754
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

755
756
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
757
758
759
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
760
761
762
763
764
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
765
        for model_type in mapping:
Yih-Dar's avatar
Yih-Dar committed
766
767
768
769
770
771
772
773
774
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


775
def check_all_auto_mappings_importable():
Sylvain Gugger's avatar
Sylvain Gugger committed
776
777
    """Check all auto mappings can be imported."""
    # This is where we need to check we have all backends or the check is incomplete.
778
779
780
781
782
783
784
785
786
787
788
789
790
    check_missing_backends()

    failures = []
    mappings_to_check = {}
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

Sylvain Gugger's avatar
Sylvain Gugger committed
791
    for name in mappings_to_check:
792
793
        name = name.replace("_MAPPING_NAMES", "_MAPPING")
        if not hasattr(transformers, name):
794
795
796
797
798
799
            failures.append(f"`{name}`")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_objects_being_equally_in_main_init():
Sylvain Gugger's avatar
Sylvain Gugger committed
800
801
802
    """
    Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is.
    """
803
804
805
806
807
    attrs = dir(transformers)

    failures = []
    for attr in attrs:
        obj = getattr(transformers, attr)
Sylvain Gugger's avatar
Sylvain Gugger committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
        if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__:
            continue

        module_path = obj.__module__
        module_name = module_path.split(".")[-1]
        module_dir = ".".join(module_path.split(".")[:-1])
        if (
            module_name.startswith("modeling_")
            and not module_name.startswith("modeling_tf_")
            and not module_name.startswith("modeling_flax_")
        ):
            parent_module = sys.modules[module_dir]

            frameworks = []
            if is_tf_available():
                frameworks.append("TF")
            if is_flax_available():
                frameworks.append("Flax")

            for framework in frameworks:
                other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
                if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
                    other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
                    other_module = getattr(parent_module, other_module_name)
                    if hasattr(other_module, f"{framework}{attr}"):
                        if not hasattr(transformers, f"{framework}{attr}"):
                            if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}{attr}")
                    if hasattr(other_module, f"{framework}_{attr}"):
                        if not hasattr(transformers, f"{framework}_{attr}"):
                            if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}_{attr}")
840
841
842
843
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
844
845
846
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


Sylvain Gugger's avatar
Sylvain Gugger committed
847
848
849
850
851
852
853
854
855
856
def check_decorator_order(filename: str) -> List[int]:
    """
    Check that in a given test file, the slow decorator is always last.

    Args:
        filename (`str`): The path to a test file to check.

    Returns:
        `List[int]`: The list of failures as a list of indices where there are problems.
    """
857
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
874
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
875
876
877
878
879
880
881
882
883
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
884
885
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
886
887
888
        )


Sylvain Gugger's avatar
Sylvain Gugger committed
889
890
891
892
893
894
895
def find_all_documented_objects() -> List[str]:
    """
    Parse the content of all doc files to detect which classes and functions it documents.

    Returns:
        `List[str]`: The list of all object names being documented.
    """
896
897
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
898
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
899
900
901
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
902
    for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
Sylvain Gugger's avatar
Sylvain Gugger committed
903
904
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
905
        raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
906
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
907
908
909
910
911
912
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
913
    "BartPretrainedModel",
914
915
    "DataCollator",
    "DataCollatorForSOP",
916
917
918
919
920
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
Steven Liu's avatar
Steven Liu committed
921
    "NerPipeline",
922
923
924
925
926
927
928
929
930
931
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
932
    "TFBartPretrainedModel",
933
934
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
935
    "Wav2Vec2ForMaskedLM",
936
    "Wav2Vec2Tokenizer",
937
938
939
940
941
942
943
944
945
946
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
947
    "TFTrainingArguments",
948
949
950
951
952
953
954
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
955
    "CharacterTokenizer",  # Internal, should never have been in the main init.
956
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
957
    "DummyObject",  # Just picked by mistake sometimes.
958
    "MecabTokenizer",  # Internal, should never have been in the main init.
959
960
961
962
963
964
965
966
967
968
969
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
970
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
971
    "AltRobertaModel",  # Internal module
972
973
974
975
976
977
978
979
980
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
981
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
982
    "BeitBackbone",
NielsRogge's avatar
NielsRogge committed
983
984
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
985
    "ConvNextV2Backbone",
986
    "DinatBackbone",
987
    "Dinov2Backbone",
Alara Dirik's avatar
Alara Dirik committed
988
    "FocalNetBackbone",
NielsRogge's avatar
NielsRogge committed
989
    "MaskFormerSwinBackbone",
990
991
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
992
993
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
994
    "SwinBackbone",
NielsRogge's avatar
NielsRogge committed
995
    "Swinv2Backbone",
amyeroberts's avatar
amyeroberts committed
996
997
    "TimmBackbone",
    "TimmBackboneConfig",
NielsRogge's avatar
NielsRogge committed
998
    "VitDetBackbone",
999
1000
1001
]


Sylvain Gugger's avatar
Sylvain Gugger committed
1002
1003
def ignore_undocumented(name: str) -> bool:
    """Rules to determine if `name` should be undocumented (returns `True` if it should not be documented)."""
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
1041
    """Check all models are properly documented."""
1042
    documented_objs = find_all_documented_objects()
1043
1044
1045
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
1046
1047
1048
1049
1050
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
1051
    check_docstrings_are_in_md()
1052
1053
1054
1055
1056
1057
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
1058
    model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
1059
1060

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
1061
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


Sylvain Gugger's avatar
Sylvain Gugger committed
1090
def is_rst_docstring(docstring: str) -> True:
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
Sylvain Gugger's avatar
Sylvain Gugger committed
1104
    """Check all docstrings are written in md and nor rst."""
1105
1106
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
1107
        with open(file, encoding="utf-8") as f:
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
1121
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
1122
1123
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
1124
1125


1126
def check_deprecated_constant_is_up_to_date():
Sylvain Gugger's avatar
Sylvain Gugger committed
1127
1128
1129
    """
    Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date.
    """
1130
1131
1132
1133
1134
1135
1136
1137
1138
    deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated")
    deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")]

    constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS
    message = []
    missing_models = sorted(set(deprecated_models) - set(constant_to_check))
    if len(missing_models) != 0:
        missing_models = ", ".join(missing_models)
        message.append(
1139
            "The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in "
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            f"`models/auto/configuration_auto.py`: {missing_models}."
        )

    extra_models = sorted(set(constant_to_check) - set(deprecated_models))
    if len(extra_models) != 0:
        extra_models = ", ".join(extra_models)
        message.append(
            "The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either "
            f"remove them from the constant or move to the deprecated folder: {extra_models}."
        )

    if len(message) > 0:
        raise Exception("\n".join(message))


1155
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
1156
    """Check all models are properly tested and documented."""
1157
1158
    print("Checking all models are included.")
    check_model_list()
1159
1160
    print("Checking all models are public.")
    check_models_are_in_init()
1161
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1162
    check_all_decorator_order()
1163
    check_all_models_are_tested()
1164
    print("Checking all objects are properly documented.")
1165
    check_all_objects_are_documented()
1166
1167
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
1168
1169
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
1170
1171
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
1172
1173
    print("Checking all auto mappings could be imported.")
    check_all_auto_mappings_importable()
1174
1175
    print("Checking all objects are equally (across frameworks) in the main __init__.")
    check_objects_being_equally_in_main_init()
1176
1177
    print("Checking the DEPRECATED_MODELS constant is up to date.")
    check_deprecated_constant_is_up_to_date()
1178
1179
1180
1181


if __name__ == "__main__":
    check_repo_quality()