nodes.py 54.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10

11
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
12
13
from PIL.PngImagePlugin import PngInfo
import numpy as np
14
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


19
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
import latent_preview
space-nuko's avatar
space-nuko committed
32

33
def before_node_execution():
34
    comfy.model_management.throw_exception_if_processing_interrupted()
35

36
def interrupt_processing(value=True):
37
    comfy.model_management.interrupt_current_processing(value)
38

39
40
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
41
42
43
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
44
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
45
46
47
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

48
49
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
50
    def encode(self, clip, text):
51
52
53
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
54
55
56
57
58
59
60
61

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

62
63
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
64
65
66
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
67
68
69
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
70
71
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
72
73
74
75
76
77
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
78
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
79
        out = []
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
94
95
96
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
101
102
103
104
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
105
106
107
108
109
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

110
111
    CATEGORY = "conditioning"

112
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
118
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
119
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
120
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
121

Jacob Segal's avatar
Jacob Segal committed
122
123
124
125
126
127
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
128
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
129
130
131
132
133
134
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

135
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
136
        c = []
137
138
139
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
140
141
142
143
144
145
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
146
            n[1]['set_area_to_bounds'] = set_area_to_bounds
147
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
148
149
150
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
156
157
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

158
159
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
160
    def decode(self, vae, samples):
161
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
162

163
164
165
166
167
168
169
170
171
172
173
174
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
175
176
177
178
179
180
181
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

182
183
    CATEGORY = "latent"

184
185
186
187
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
188
        if pixels.shape[1] != x or pixels.shape[2] != y:
189
190
191
192
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
193

194
195
196
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
197
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
198

comfyanonymous's avatar
comfyanonymous committed
199
200
201
202
203
204
205
206
207
208
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
209
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
210
211
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
212

213
214
215
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
216
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
217
218
219
220
221
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

222
    def encode(self, vae, pixels, mask, grow_mask_by=6):
223
224
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
225
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
226

227
        pixels = pixels.clone()
228
        if pixels.shape[1] != x or pixels.shape[2] != y:
229
230
231
232
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
233

234
        #grow mask by a few pixels to keep things seamless in latent space
235
236
237
238
239
240
241
242
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

243
        m = (1.0 - mask.round()).squeeze(1)
244
245
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
246
            pixels[:,:,:,i] *= m
247
248
249
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

250
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
251

Dr.Lt.Data's avatar
Dr.Lt.Data committed
252
253
class SaveLatent:
    def __init__(self):
254
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
255
256
257
258

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
259
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
260
261
262
263
264
265
266
267
268
269
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
270
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
271
272
273
274
275
276

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

277
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
278
279
280
281
282
283
284
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

285
286
        output = {}
        output["latent_tensor"] = samples["samples"]
287
        output["latent_format_version_0"] = torch.tensor([])
288

289
        comfy.utils.save_torch_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
290
291
292
293
294
295
        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
296
297
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
298
299
300
301
302
303
304
305
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
306
307
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
308
309
310
311
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
312
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
328

comfyanonymous's avatar
comfyanonymous committed
329
330
331
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
332
333
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
334
335
336
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

337
    CATEGORY = "advanced/loaders"
338

comfyanonymous's avatar
comfyanonymous committed
339
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
340
341
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
342
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
343

344
345
346
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
347
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
348
349
350
351
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

352
    CATEGORY = "loaders"
353

354
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
355
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
356
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
357
358
        return out

sALTaccount's avatar
sALTaccount committed
359
360
361
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
362
        paths = []
sALTaccount's avatar
sALTaccount committed
363
        for search_path in folder_paths.get_folder_paths("diffusers"):
364
            if os.path.exists(search_path):
365
366
367
368
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

369
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
370
371
372
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

373
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
374
375

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
376
377
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
378
379
380
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
381
                    break
382

383
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
384
385


386
387
388
389
390
391
392
393
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

394
    CATEGORY = "loaders"
395
396
397
398
399
400

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

417
418
419
420
421
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
422
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
423
424
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
425
426
427
428
429
430
431
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
432
433
434
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

435
        lora_path = folder_paths.get_full_path("loras", lora_name)
436
437
438
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
439
440
441
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
442
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
443
444
445
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

446
447
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
448
449
    #TODO: scale factor?
    def load_vae(self, vae_name):
450
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
451
452
453
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
454
455
456
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
457
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
458
459
460
461
462
463
464

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
465
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
466
467
468
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

469
470
471
472
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
473
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
474
475
476
477
478
479
480

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
481
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
482
483
484
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
485
486
487
488

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
489
490
491
492
493
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

499
    def apply_controlnet(self, conditioning, control_net, image, strength):
500
501
502
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
503
504
505
506
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
507
508
509
510
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
511
512
513
            c.append(n)
        return (c, )

514
515
516
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
517
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
518
519
520
521
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

522
    CATEGORY = "advanced/loaders"
523

524
    def load_clip(self, clip_name):
525
        clip_path = folder_paths.get_full_path("clip", clip_name)
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
543
544
        return (clip,)

545
546
547
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
548
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
549
550
551
552
553
554
555
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
556
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
557
        clip_vision = comfy.clip_vision.load(clip_path)
558
559
560
561
562
563
564
565
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
566
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
567
568
    FUNCTION = "encode"

569
    CATEGORY = "conditioning"
570
571
572
573
574
575
576
577

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
578
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
579
580
581
582
583
584
585

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
586
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
587
588
589
590
591
592
593
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
594
595
596
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
597
598
599
600
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
601
    CATEGORY = "conditioning/style_model"
602

603
604
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
605
        c = []
606
607
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
608
609
610
            c.append(n)
        return (c, )

611
612
613
614
615
616
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
617
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
618
619
620
621
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

622
    CATEGORY = "conditioning"
623

624
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
625
626
627
        if strength == 0:
            return (conditioning, )

628
629
630
        c = []
        for t in conditioning:
            o = t[1].copy()
631
632
633
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
634
            else:
635
                o["unclip_conditioning"] = [x]
636
637
638
639
            n = [t[0], o]
            c.append(n)
        return (c, )

640
641
642
643
644
645
646
647
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
648
    CATEGORY = "loaders"
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
670
    CATEGORY = "conditioning/gligen"
671
672
673
674
675
676
677
678
679
680
681
682
683
684

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
685

comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
691
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
692
693
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
694
695
696
697
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

698
699
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
700
701
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
702
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
703

comfyanonymous's avatar
comfyanonymous committed
704

705
706
707
708
709
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
710
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
711
712
                              }}
    RETURN_TYPES = ("LATENT",)
713
    FUNCTION = "frombatch"
714

715
    CATEGORY = "latent/batch"
716

717
    def frombatch(self, samples, batch_index, length):
718
719
720
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
761
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
762

comfyanonymous's avatar
comfyanonymous committed
763
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
764
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
765
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
766
767
768
769

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
770
771
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
772
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
773
774
775
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

776
777
    CATEGORY = "latent"

778
    def upscale(self, samples, upscale_method, width, height, crop):
779
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
780
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
781
782
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
783
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
784
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
802
803
804
805
806
807
808
809
810
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
811
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
812
813

    def rotate(self, samples, rotation):
814
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
815
816
817
818
819
820
821
822
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

823
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
824
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
825
826
827
828
829
830
831
832
833
834

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
835
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
836
837

    def flip(self, samples, flip_method):
838
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
839
        if flip_method.startswith("x"):
840
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
841
        elif flip_method.startswith("y"):
842
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
843
844

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
845
846
847
848

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
849
850
851
852
853
854
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
855
856
857
858
859
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
860
861
862
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
863
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
887

comfyanonymous's avatar
comfyanonymous committed
888
889
890
891
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
892
893
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
894
895
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
896
897
898
899
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
900
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
901
902

    def crop(self, samples, width, height, x, y):
903
904
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
905
906
907
908
909
910
911
912
913
914
915
916
917
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
918
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
919
920
        return (s,)

921
922
923
924
925
926
927
928
929
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

930
    CATEGORY = "latent/inpaint"
931
932
933

    def set_mask(self, samples, mask):
        s = samples.copy()
934
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
935
936
        return (s,)

space-nuko's avatar
space-nuko committed
937

space-nuko's avatar
space-nuko committed
938
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
939
    device = comfy.model_management.get_torch_device()
940
    latent_image = latent["samples"]
941

comfyanonymous's avatar
comfyanonymous committed
942
943
944
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
945
946
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
947

948
    noise_mask = None
949
    if "noise_mask" in latent:
950
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
951

space-nuko's avatar
space-nuko committed
952
953
954
955
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

956
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
957

958
    pbar = comfy.utils.ProgressBar(steps)
959
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
960
        preview_bytes = None
961
        if previewer:
962
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
963
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
964

965
966
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
967
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, seed=seed)
968
969
970
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
971

comfyanonymous's avatar
comfyanonymous committed
972
973
974
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
975
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
976
977
978
979
980
981
982
983
984
985
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
986
987
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
988
989
990
991

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

992
993
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
994
995
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
996

comfyanonymous's avatar
comfyanonymous committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1014
1015
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1016
1017
1018
1019
1020

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1021

space-nuko's avatar
space-nuko committed
1022
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1023
1024
1025
1026
1027
1028
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1029
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1030
1031
1032

class SaveImage:
    def __init__(self):
1033
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1034
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1035
1036
1037
1038

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1039
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1040
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1041
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1042
1043
1044
1045
1046
1047
1048
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1049
1050
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1051
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1052
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1053
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1054
1055
        for image in images:
            i = 255. * image.cpu().numpy()
1056
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1057
1058
1059
1060
1061
1062
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1063

1064
            file = f"{filename}_{counter:05}_.png"
1065
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1066
1067
1068
1069
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1070
            })
1071
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1072

m957ymj75urz's avatar
m957ymj75urz committed
1073
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1074

pythongosssss's avatar
pythongosssss committed
1075
1076
class PreviewImage(SaveImage):
    def __init__(self):
1077
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1078
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1079
1080
1081

    @classmethod
    def INPUT_TYPES(s):
1082
        return {"required":
pythongosssss's avatar
pythongosssss committed
1083
1084
1085
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1086

1087
1088
1089
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1090
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1091
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1092
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1093
                    {"image": (sorted(files), )},
1094
                }
1095
1096

    CATEGORY = "image"
1097

1098
    RETURN_TYPES = ("IMAGE", "MASK")
1099
1100
    FUNCTION = "load_image"
    def load_image(self, image):
1101
        image_path = folder_paths.get_annotated_filepath(image)
1102
        i = Image.open(image_path)
1103
        i = ImageOps.exif_transpose(i)
1104
        image = i.convert("RGB")
1105
        image = np.array(image).astype(np.float32) / 255.0
1106
        image = torch.from_numpy(image)[None,]
1107
1108
1109
1110
1111
1112
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1113

1114
1115
    @classmethod
    def IS_CHANGED(s, image):
1116
        image_path = folder_paths.get_annotated_filepath(image)
1117
1118
1119
1120
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1121

1122
1123
1124
1125
1126
1127
1128
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1129
class LoadImageMask:
1130
    _color_channels = ["alpha", "red", "green", "blue"]
1131
1132
    @classmethod
    def INPUT_TYPES(s):
1133
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1134
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1135
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1136
                    {"image": (sorted(files), ),
1137
                     "channel": (s._color_channels, ), }
1138
1139
                }

1140
    CATEGORY = "mask"
1141
1142
1143
1144

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1145
        image_path = folder_paths.get_annotated_filepath(image)
1146
        i = Image.open(image_path)
1147
        i = ImageOps.exif_transpose(i)
1148
1149
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1163
        image_path = folder_paths.get_annotated_filepath(image)
1164
1165
1166
1167
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1179
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1180
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1181
1182
1183
1184
1185
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1186
1187
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1188
1189
1190
1191
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1192
    CATEGORY = "image/upscaling"
1193

comfyanonymous's avatar
comfyanonymous committed
1194
1195
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1196
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1197
1198
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1199

comfyanonymous's avatar
comfyanonymous committed
1200
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1201
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1236
1237
1238
1239
1240
1241
1242
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1243
1244
1245
1246
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1247
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1248
1249
1250
1251
1252
1253
1254
1255
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1256
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1269

1270
1271
1272
1273
1274
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1275
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1295

Guo Y.K's avatar
Guo Y.K committed
1296
1297
1298
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1299
1300
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1301
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1302
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1303
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1304
1305
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1306
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1307
1308
1309
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1310
    "LatentUpscaleBy": LatentUpscaleBy,
1311
    "LatentFromBatch": LatentFromBatch,
1312
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1313
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1314
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1315
    "LoadImage": LoadImage,
1316
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1317
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1318
    "ImageScaleBy": ImageScaleBy,
1319
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1320
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1321
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1322
1323
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1324
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1325
    "KSamplerAdvanced": KSamplerAdvanced,
1326
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1327
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1328
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1329
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1330
    "LatentCrop": LatentCrop,
1331
    "LoraLoader": LoraLoader,
1332
    "CLIPLoader": CLIPLoader,
1333
    "DualCLIPLoader": DualCLIPLoader,
1334
    "CLIPVisionEncode": CLIPVisionEncode,
1335
    "StyleModelApply": StyleModelApply,
1336
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1337
1338
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1339
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1340
1341
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1342
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1343
    "VAEEncodeTiled": VAEEncodeTiled,
1344
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1345
1346
1347
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1348
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1349
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1350
1351

    "LoadLatent": LoadLatent,
1352
    "SaveLatent": SaveLatent,
comfyanonymous's avatar
comfyanonymous committed
1353
1354
}

City's avatar
City committed
1355
1356
1357
1358
1359
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1360
1361
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1376
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1377
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1378
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1390
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1391
    "LatentComposite": "Latent Composite",
1392
1393
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1394
1395
1396
1397
1398
1399
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1400
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1401
1402
1403
1404
1405
1406
1407
1408
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1424
1425
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1426
            return True
1427
1428
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1429
            return False
1430
1431
1432
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1433
        return False
1434

Hacker 17082006's avatar
Hacker 17082006 committed
1435
def load_custom_nodes():
1436
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1437
    node_import_times = []
1438
1439
1440
1441
1442
1443
1444
1445
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1446
            if module_path.endswith(".disabled"): continue
1447
            time_before = time.perf_counter()
1448
            success = load_custom_node(module_path)
1449
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1450

1451
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1452
        print("\nImport times for custom nodes:")
1453
        for n in sorted(node_import_times):
1454
1455
1456
1457
1458
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1459
        print()
1460

1461
def init_custom_nodes():
1462
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1463
1464
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1465
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1466
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1467
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1468
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1469
    load_custom_nodes()