task.py 73.1 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
Baber's avatar
Baber committed
9
from functools import partial
10
from inspect import getsource
11
12
13
14
15
16
17
18
19
20
21
22
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
23
24
25

import datasets
import numpy as np
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

Lintang Sutawika's avatar
Lintang Sutawika committed
52
eval_logger = logging.getLogger(__name__)
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
@dataclass
class TaskConfig(dict):
57
    # task naming/registry
58
59
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
60
    tag: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
64
    custom_dataset: Optional[Callable] = None
65
66
67
68
69
70
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
71
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
72
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
73
    )
74
75
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
76
77
78
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
79
    doc_to_image: Union[Callable, str] = None
80
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
81
    unsafe_code: bool = False
82
83
84
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
85
    description: str = ""
86
87
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
88
    fewshot_config: Optional[dict] = None
89
    # runtime configuration options
90
    num_fewshot: Optional[int] = None
91
    # scoring options
92
93
94
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
95
    repeats: int = 1
96
    filter_list: Optional[Union[str, list]] = None
97
    should_decontaminate: bool = False
98
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
99
    gen_prefix: Optional[str] = None
100
101
102
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
103

Ethan Smith's avatar
Ethan Smith committed
104
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
105
        if self.generation_kwargs is not None:
106
            if self.output_type != "generate_until":
107
                eval_logger.warning(
108
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
109
110
111
112
113
114
115
116
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
117
118
119
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
120
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
121
        else:
122
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
125
126
127
128
129
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
130
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
131
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
132
                }
Baber Abbasi's avatar
Baber Abbasi committed
133
134
135
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
136

137
138
139
    def __getitem__(self, item):
        return getattr(self, item)

140
141
142
    def __setitem__(self, item, value):
        return setattr(self, item, value)

143
    def to_dict(self, keep_callable: bool = False) -> dict:
144
145
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
146
        Used for dumping results alongside full task configuration
147

haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
151
152
153
154
155
156
157
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
158
159
160
161
162
163
164
165
166
167
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
168
        return cfg_dict
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

186
187
188
189
190
191
192
193
194
195
196

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

197
    VERSION: Optional[Union[int, str]] = None
198

199
200
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
201
    DATASET_PATH: Optional[str] = None
202
203

    # The name of a subset within `DATASET_PATH`.
204
    DATASET_NAME: Optional[str] = None
205

206
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
207

208
209
    def __init__(
        self,
210
211
212
213
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
214
    ) -> None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
237
238
239
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
240

241
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
242

lintangsutawika's avatar
lintangsutawika committed
243
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
244
245
246
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
247

248
249
250
251
252
253
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
278
279
280
281
282
283
284
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
285

286
    @property
287
    def config(self) -> TaskConfig:
288
289
290
        """Returns the TaskConfig associated with this class."""
        return self._config

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

306
    def training_docs(self) -> Iterable:
307
308
309
310
311
312
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

313
    def validation_docs(self) -> Iterable:
314
315
316
317
318
319
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

320
    def test_docs(self) -> Iterable:
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

327
    def fewshot_docs(self) -> Iterable:
328
329
330
331
332
333
334
335
336
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
337
338
339
340
341
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
342
343
            return self.test_docs()

344
    def _process_doc(self, doc: dict) -> dict:
345
346
347
348
349
350
351
352
353
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
354

355
    @property
356
    def instances(self) -> List[Instance]:
357
358
359
360
361
362
363
364
365
366
367
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

368
369
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
370
371
372
373
374
375
376
377
378
379
380
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

381
382
383
384
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

385
386
387
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
388
389
390
    def doc_to_prefix(self, doc):
        return ""

391
392
    def build_all_requests(
        self,
393
        *,
394
        limit: Union[int, None] = None,
395
        samples: Optional[List[int]] = None,
396
397
398
399
400
401
402
403
404
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
405
    ) -> None:
406
        """Build a set of Instances for a task, and store them in task.instances"""
407
408
409
410

        # used with caching
        og_limit = limit

411
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
412
413
414
415
416
417
418
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
419
        cache_key += f"-tokenizer{tokenizer_name}"
420

Baber Abbasi's avatar
Baber Abbasi committed
421
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
422
423
424
425
426
427
428
429
430
431
432
433
434

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
435
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
436

437
        instances = []
438
439
440
441
442
443
444
445
446
447

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
448
449
450
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
451
452
453
454
455
456
457
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
458
        ):
459
            # sample fewshot context #TODO: need to offset doc_id by rank now!
460
            fewshot_ctx = self.fewshot_context(
461
                doc,
462
463
464
465
466
467
468
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
469
                gen_prefix=self.doc_to_prefix(doc),
470
            )
471

472
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
473
474
475
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
476
                metadata=(self.config["task"], doc_id, self.config.repeats),
477
                apply_chat_template=apply_chat_template,
478
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
479
            )
480
481
482
483

            if not isinstance(inst, list):
                inst = [inst]

484
485
486
487
488
489
490
491
492
493
494
495
496
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
497

498
499
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
500

501
502
503
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
520
            The number of times each instance in a dataset is inferred on. Defaults to 1,
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

556
557
558
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
559
560
561
562
563
564
565
566
567
568
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

569
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
570
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
571
572
573
574
575
576
577
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
578
579
580
581
582
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
583
584
585
        :returns: str
            The fewshot context.
        """
586
        if rnd is None:
587
588
589
590
591
592
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
593

594
        description = description if description else ""
595
596

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
597
            labeled_examples = ""
598
        else:
lintangsutawika's avatar
lintangsutawika committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
623
            )
624
625

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
626
        return description + labeled_examples + example
627

628
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
629
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
630
631
        if hasattr(self, "_filters"):
            for f in self._filters:
632
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
633
634
635
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
636

baberabb's avatar
baberabb committed
637
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
638
        """Returns the config as a dictionary."""
639
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
640
        # (num_fewshot)
641
        return self.config.to_dict()
642

Baber Abbasi's avatar
Baber Abbasi committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

Baber's avatar
Baber committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
    def overide_filter(self, filter_name: str, **kwargs) -> None:
        """
        Override the default filters used for evaluation with custom filters.
        """
        from lm_eval.api.registry import get_filter

        if filter_name == "strip_reasoning":
            if not self._filters:
                self._filters = [
                    build_filter_ensemble(
                        "strip_reasoning", [["strip_reasoning", kwargs]]
                    )
                ]
            else:
                for f in self._filters:
                    f.filters.insert(
                        0, partial(get_filter("strip_reasoning"), **kwargs)
                    )

702
703
704
705
706
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

707
708
709
710
711
712
713
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
714
715
716
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
717
718

    def doc_iterator(
719
720
721
722
723
724
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
725
    ) -> Iterator[Tuple[int, Any]]:
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
748
749
        return doc_iterator

750
751

class ConfigurableTask(Task):
752
    VERSION = "Yaml"
753
    OUTPUT_TYPE = None
754
    CONFIG = None
755
756

    def __init__(
757
758
759
760
761
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
762
    ) -> None:  # TODO no super() call here
763
        # Get pre-configured attributes
764
        self._config = self.CONFIG
765

766
        # Use new configurations if there was no preconfiguration
767
        if self.config is None:
768
            self._config = TaskConfig(**config)
769
770
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
771
            if config is not None:
772
                self._config.__dict__.update(config)
773

774
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
775
776
777
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
778

779
780
781
782
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

783
        if self.config.output_type is not None:
784
785
786
787
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
788
            self.OUTPUT_TYPE = self.config.output_type
789

790
791
792
793
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

794
795
796
797
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
798
799
800
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

801
802
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
803

804
805
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
806

807
808
809
810
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
811

812
        if self.config.metric_list is None:
813
            # TODO: handle this in TaskConfig.__post_init__ ?
814
815
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

816
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
817
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
818
                self._metric_fn_kwargs[metric_name] = {}
819
820
821
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
822
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
823
        else:
824
            for metric_config in self.config.metric_list:
825
826
827
828
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
829
830
831
832
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
833
834
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
835
                }
Chris's avatar
Chris committed
836
837
838
839
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
840

841
                if self.config.process_results is not None:
842
843
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
844
845
846
847
848
849
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
850
851
852
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
853
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
854

855
                if "aggregation" in metric_config:
856
                    agg_name = metric_config["aggregation"]
857
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
858
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
859
                    elif callable(agg_name):  # noqa: E721
860
861
862
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
863
                else:
864
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
865
                    metric_agg = get_metric_aggregation(metric_name)
866
                    eval_logger.warning(
867
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
868
869
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
870
                    )
871
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
872

873
874
875
876
877
878
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
879
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
880
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
881
                        f"higher_is_better={is_higher_better(metric_name)}"
882
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
883
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
884

885
        self.download(self.config.dataset_kwargs)
886
887
888
        self._training_docs = None
        self._fewshot_docs = None

889
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
890
            self._filters = []
891
            for filter_config in self.config.filter_list:
892
893
894
895
896
897
898
899
900
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
901
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
902
        else:
Baber Abbasi's avatar
Baber Abbasi committed
903
904
905
906
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
907
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
908

909
910
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
911
            self.prompt = get_prompt(
912
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
913
            )
914
915
916
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
917
        if self.fewshot_docs() is not None:
918
919
920
921
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
922
923
924
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
941

942
        self.task_docs = self.eval_docs
943

944
        # Test One Doc
945
        self.features = list(self.task_docs.features.keys())
946
947
        self.multiple_input = 0
        self.multiple_target = 0
948
        test_doc = self.task_docs[0]
949
        test_text = self.doc_to_text(test_doc)
950
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
951

952
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
953
            test_choice = self.doc_to_choice(test_doc)
954
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
955
                eval_logger.error("doc_to_choice must return list")
956
957
            else:
                num_choice = len(test_choice)
958

959
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
960
961
962
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
963
                self.multiple_input = num_choice
964
965
        else:
            test_choice = None
966

967
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
968
969
970
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
971
            self.multiple_target = len(test_target)
972
        else:
973
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
974
                test_target = test_choice[test_target]
975
            else:
lintangsutawika's avatar
lintangsutawika committed
976
                test_target = str(test_target)
977

978
979
980
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
981
            check_choices = [test_target]
982
983
984
985
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
986
987
                    True
                    if self.config.target_delimiter.rstrip()
988
                    != self.config.target_delimiter
989
                    else False
990
                )
991

992
                if delimiter_has_whitespace and choice_has_whitespace:
993
994
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
995
996
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
997
                    eval_logger.debug(
998
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
999
1000
                    )

Baber Abbasi's avatar
Baber Abbasi committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1018

baberabb's avatar
baberabb committed
1019
    def has_training_docs(self) -> bool:
1020
        if self.config.training_split is not None:
1021
1022
1023
1024
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1025
    def has_validation_docs(self) -> bool:
1026
        if self.config.validation_split is not None:
1027
1028
1029
1030
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1031
    def has_test_docs(self) -> bool:
1032
        if self.config.test_split is not None:
1033
1034
1035
1036
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1037
    def training_docs(self) -> datasets.Dataset:
1038
        if self.has_training_docs():
1039
1040
1041
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1042
                )
1043
            return self.dataset[self.config.training_split]
1044

baberabb's avatar
baberabb committed
1045
    def validation_docs(self) -> datasets.Dataset:
1046
        if self.has_validation_docs():
1047
1048
1049
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1050
                )
1051
            return self.dataset[self.config.validation_split]
1052

baberabb's avatar
baberabb committed
1053
    def test_docs(self) -> datasets.Dataset:
1054
        if self.has_test_docs():
1055
1056
1057
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1058

1059
    def fewshot_docs(self):
1060
        if self.config.fewshot_split is not None:
1061
1062
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1063
            return self.dataset[self.config.fewshot_split]
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1076
        else:
1077
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1078
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1079
                    f"[Task: {self.config.task}] "
1080
1081
1082
1083
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1084

KonradSzafer's avatar
KonradSzafer committed
1085
1086
1087
1088
1089
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1090
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1091
1092
1093
1094
1095
1096
1097
1098
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1099
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1100
1101
            # if last message is user, append to it to avoid two user messages in a row
            else:
1102
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1103
1104
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1105
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1106
1107
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1108

lintangsutawika's avatar
lintangsutawika committed
1109
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1110
1111
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1112
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1113
1114
1115
1116
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1117
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1118
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1119
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1120
1121
1122
1123
1124
1125
1126
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1127
1128
1129
1130
1131
1132
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1133
1134
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1135
1136
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1137
1138
1139
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1140
1141
1142
1143
1144
1145
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1146
1147
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1148

KonradSzafer's avatar
KonradSzafer committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1158
        else:
KonradSzafer's avatar
KonradSzafer committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1172
1173
1174
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1175
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1176
1177
1178
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1179
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1180
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1181
                )
lintangsutawika's avatar
lintangsutawika committed
1182
1183

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1184
1185
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1186
                # TODO: append prefill?
1187
1188
                if not labeled_examples:
                    return ""
1189
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1190
1191
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1192
1193
1194
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1195
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1196
1197
1198
1199
1200
1201
1202
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1203
1204
1205
1206
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1207
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1208
1209
1210
1211
1212
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1213
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1214
1215
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1216
1217
1218
1219
1220
1221
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1222
1223
1224
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1225
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1226
1227
1228
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1229
1230
1231
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1232
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1233
1234
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1235
1236
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1237
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1238
            )
1239
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1240
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1241
1242
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1243
1244
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1245
1246
            if self.multiple_input:
                return labeled_examples
1247
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1248
                return labeled_examples + example + prefix
1249
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1250
                return [labeled_examples + ex + prefix for ex in example]
1251
1252
1253
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1254
                    return labeled_examples + choices[example] + prefix
1255
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1256
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1257

Baber Abbasi's avatar
Baber Abbasi committed
1258
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1259
        """Iterates over FilterEnsembles and applies them to instances"""
1260
1261
        if hasattr(self, "_filters"):
            for f in self._filters:
1262
                f.apply(self._instances)
1263
1264
1265
1266
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1267
    def should_decontaminate(self):
1268
        return self.config.should_decontaminate
1269

Baber Abbasi's avatar
Baber Abbasi committed
1270
    def doc_to_decontamination_query(self, doc: dict):
1271
        if self.config.should_decontaminate:
1272
1273
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1274
            else:
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1286

1287
    def _process_doc(self, doc: dict) -> dict:
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1298
    def doc_to_text(self, doc, doc_to_text=None):
1299
1300
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1301
1302
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1303
        else:
1304
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1305

1306
        if isinstance(doc_to_text, int):
1307
            return doc_to_text
1308
        elif isinstance(doc_to_text, str):
1309
            if doc_to_text in self.features:
1310
                # if self.config.doc_to_choice is not None:
1311
1312
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1313
1314
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1315
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1316
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1317
1318
1319
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1320
        elif callable(doc_to_text):
1321
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1322
        # Used when applying a Promptsource template
1323
        elif hasattr(doc_to_text, "apply"):
1324
1325
1326
1327
1328
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1329
                return self.config.fewshot_delimiter
1330
        else:
1331
            print(type(doc_to_text))
1332
            raise TypeError
1333

Yu Shi Jie's avatar
Yu Shi Jie committed
1334
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1335
1336
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1337
1338
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1339
        else:
1340
            doc_to_target = self.config.doc_to_target
1341

1342
        if isinstance(doc_to_target, int):
1343
            return doc_to_target
1344
        elif isinstance(doc_to_target, str):
1345
            if doc_to_target in self.features:
1346
                # if self.config.doc_to_choice is not None:
1347
1348
1349
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1350
            else:
lintangsutawika's avatar
lintangsutawika committed
1351
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1352
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1353
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1354
1355
1356
1357
1358
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1359
1360
1361
1362
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1363
1364
                else:
                    return target_string
1365
        elif isinstance(doc_to_target, list):
1366
            return doc_to_target
1367
        elif callable(doc_to_target):
1368
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1369
        # Used when applying a Promptsource template
1370
        elif hasattr(doc_to_target, "apply"):
1371
            applied_prompt = doc_to_target.apply(doc)
1372
1373
1374
1375
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1376
                return self.config.fewshot_delimiter
1377
1378
        else:
            raise TypeError
1379

Yu Shi Jie's avatar
Yu Shi Jie committed
1380
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1381
1382
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1383
1384
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1385
        elif self.config.doc_to_choice is None:
1386
1387
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1388
            doc_to_choice = self.config.doc_to_choice
1389

1390
        if isinstance(doc_to_choice, str):
1391
1392
1393
1394
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1395
        elif isinstance(doc_to_choice, list):
1396
            return doc_to_choice
1397
        elif isinstance(doc_to_choice, dict):
1398
1399
1400
1401
1402
1403
1404
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1405

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1452
1453
1454
1455
1456
1457
1458
1459
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1460
1461
1462
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1463
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1464
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1465

1466
1467
        aux_arguments = None

1468
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1469
            arguments = (ctx, self.doc_to_target(doc))
1470
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1471
            arguments = (self.doc_to_target(doc),)
1472
        elif self.OUTPUT_TYPE == "multiple_choice":
1473
            choices = self.doc_to_choice(doc)
1474
            target_delimiter = self.config.target_delimiter
1475
1476
            if apply_chat_template:
                target_delimiter = ""
1477
1478
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1479
                # apply chat_template to choices if apply_chat_template
1480
                cont = self.doc_to_target(doc)
1481

1482
                arguments = [
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1493
                ]
1494
            else:
1495
                # Otherwise they are placed in the continuation
1496
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1497

1498
1499
1500
1501
1502
1503
1504
1505
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1506
1507
1508
1509
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1525
1526
1527
1528
1529
1530
1531
1532
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1533
1534
1535
1536
1537
1538
1539
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1540
            request_list = [
1541
1542
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1543
                    doc=doc,
1544
                    arguments=arg,
1545
                    idx=i,
1546
1547
                    **kwargs,
                )
1548
                for i, arg in enumerate(arguments)
1549
            ]
1550
1551

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1552

lintangsutawika's avatar
lintangsutawika committed
1553
        return Instance(
1554
1555
1556
1557
1558
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1559
        )
1560
1561

    def process_results(self, doc, results):
1562
1563
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1564

1565
        result_dict = {}
1566
        use_metric = list(self._metric_fn_list.keys())
1567
1568
1569
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1570
1571
1572
1573
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1574
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1575
            (loglikelihood,) = results
1576
1577
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1578
            return {
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1594
            }
1595
        elif self.OUTPUT_TYPE == "multiple_choice":
1596
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1597

1598
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1599
            choices = self.doc_to_choice(doc)
1600
1601
            completion_len = np.array([float(len(i)) for i in choices])

1602
1603
            if (
                2 * len(choices) == len(lls)
1604
                and "acc_mutual_info" in self._metric_fn_list.keys()
1605
1606
1607
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1608
1609
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1610
1611
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1612
                # and this stores our "regular" conditional loglikelihoods
1613
                lls = lls[: len(choices)]
1614

1615
1616
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1617

1618
1619
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1620
            else:
1621
                gold = self.doc_to_target(doc)
1622
1623

            gold_index_error = False
1624
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1625
1626
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1627
1628
                    gold_index_error = True
            else:
1629
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1630
                    gold = gold if gold < len(choices) else -100
1631
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1632
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1633

Lintang Sutawika's avatar
Lintang Sutawika committed
1634
                if gold == -100:
1635
1636
1637
1638
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1639
                    f"Label index was not in within range of available choices,"
1640
1641
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1642

1643
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1644
1645
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1646
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1647
1648
1649
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1650
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1651
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1652

Lintang Sutawika's avatar
Lintang Sutawika committed
1653
1654
1655
1656
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1657
            result_dict = {
1658
                **({"acc": acc} if "acc" in use_metric else {}),
1659
1660
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1661
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1662
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1663
1664
1665
1666
1667
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1668
1669
            }

1670
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1671
1672
1673
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1674
1675
1676
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1677
        elif self.OUTPUT_TYPE == "generate_until":
1678
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1679
            result = results[0]
1680
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1681
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1682
                # it assumes that doc_to_target returns a number.
1683
1684
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1685
1686
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1687
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1688
1689
1690
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1691
            ):
Chris's avatar
Chris committed
1692
1693
                # cast gold to the same type as result
                gold = type(result)(gold)
1694

lintangsutawika's avatar
lintangsutawika committed
1695
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1696
1697
1698
1699
1700
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1701
1702
1703
1704
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1705
1706
1707
1708
1709
1710
1711
1712
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1713
                    else:
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1735
                else:
1736
                    try:
1737
                        result_score = self._metric_fn_list[metric](
1738
1739
                            references=[gold],
                            predictions=[result],
1740
                            **self._metric_fn_kwargs[metric],
1741
                        )
1742
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1743
                        result_score = self._metric_fn_list[metric]([gold, result])
1744
1745
1746
1747
1748
1749
1750
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1751
        else:
lintangsutawika's avatar
lintangsutawika committed
1752
1753
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1754
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1755
            )
1756
1757
1758

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1759
    def aggregation(self) -> dict:
1760
1761
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1762
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1763
        return self._higher_is_better
1764

Baber Abbasi's avatar
Baber Abbasi committed
1765
1766
1767
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1768
1769
1770
1771
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1772
1773
1774
1775
1776
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1777
            f"num_samples={len(self.eval_docs)})"
1778
1779
        )

1780
1781

class MultipleChoiceTask(Task):
1782
    OUTPUT_TYPE = "loglikelihood"
1783

baberabb's avatar
baberabb committed
1784
    def doc_to_target(self, doc: dict) -> str:
1785
1786
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1787
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1788
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1789
1790
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1791
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1792
                doc=doc,
1793
                arguments=(ctx, " {}".format(choice)),
1794
                idx=i,
1795
1796
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1797
1798
            for i, choice in enumerate(doc["choices"])
        ]
1799

1800
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1801
1802
1803
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1815
    def higher_is_better(self) -> dict:
1816
1817
1818
1819
1820
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1821
    def aggregation(self) -> dict:
1822
1823
1824
1825
1826
1827
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1828
class PerplexityTask(Task):
1829
1830
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1831
    def has_training_docs(self) -> bool:
1832
1833
        return False

baberabb's avatar
baberabb committed
1834
    def fewshot_examples(self, k: int, rnd) -> List:
1835
1836
1837
1838
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1839
1840
        return []

baberabb's avatar
baberabb committed
1841
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1842
1843
1844
1845
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1846
1847
1848

        return ""

baberabb's avatar
baberabb committed
1849
    def higher_is_better(self) -> dict:
1850
1851
1852
1853
1854
1855
1856
1857
1858
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1859
    def doc_to_text(self, doc) -> str:
1860
1861
1862
1863
1864
        return ""

    def doc_to_target(self, doc):
        return doc

1865
1866
1867
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1868

lintangsutawika's avatar
lintangsutawika committed
1869
1870
1871
1872
1873
1874
1875
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1876

1877
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1878
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1879
1880
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1881
1882
1883
1884
1885
1886
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1887
    def aggregation(self) -> dict:
1888
1889
1890
1891
1892
1893
1894
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1895
    def count_bytes(cls, doc) -> int:
1896
1897
1898
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1899
    def count_words(cls, doc) -> int:
1900
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1901
        return len(re.split(r"\s+", doc))