task.py 72.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
import re
Baber's avatar
Baber committed
6
from collections.abc import Callable, Iterable, Iterator, Mapping
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
from typing import (
    Any,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    Union,
)
19
20
21

import datasets
import numpy as np
22
from tqdm import tqdm
23
24

from lm_eval import utils
25
from lm_eval.api import samplers
26
from lm_eval.api.instance import Instance, OutputType
lintangsutawika's avatar
lintangsutawika committed
27
from lm_eval.api.registry import (
28
29
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
30
    get_aggregation,
31
    get_metric,
32
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
33
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
34
)
35
from lm_eval.caching.cache import load_from_cache, save_to_cache
36
37
38
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

39

40
41
42
43
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
44
    "generate_until",
45
46
]

Lintang Sutawika's avatar
Lintang Sutawika committed
47
eval_logger = logging.getLogger(__name__)
48

lintangsutawika's avatar
lintangsutawika committed
49

50
51
@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
54
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
55
    tag: Optional[Union[str, list]] = None
56
57
58
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
59
    custom_dataset: Optional[Callable] = None
60
61
62
63
64
65
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
66
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
67
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
68
    )
69
70
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
71
72
73
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
74
    doc_to_image: Union[Callable, str] = None
75
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
76
    unsafe_code: bool = False
77
78
79
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
80
    description: str = ""
81
82
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
83
    fewshot_config: Optional[dict] = None
84
    # runtime configuration options
85
    num_fewshot: Optional[int] = None
86
    # scoring options
87
88
89
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
90
    repeats: int = 1
91
    filter_list: Optional[Union[str, list]] = None
92
    should_decontaminate: bool = False
93
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
94
    gen_prefix: Optional[str] = None
95
96
97
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
112
                eval_logger.warning(
Baber's avatar
Baber committed
113
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={self.fewshot_delimiter!r}"
Baber Abbasi's avatar
Baber Abbasi committed
114
                )
115
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
116
        else:
117
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
120
121
122
123
124
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
125
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
126
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
127
                }
Baber Abbasi's avatar
Baber Abbasi committed
128
129
130
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
131

132
133
134
    def __getitem__(self, item):
        return getattr(self, item)

135
136
137
    def __setitem__(self, item, value):
        return setattr(self, item, value)

138
    def to_dict(self, keep_callable: bool = False) -> dict:
139
140
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
141
        Used for dumping results alongside full task configuration
142

haileyschoelkopf's avatar
haileyschoelkopf committed
143
144
145
146
147
148
149
150
151
152
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
153
154
155
156
157
158
159
160
161
162
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
163
        return cfg_dict
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

181
182
183
184
185
186
187
188
189
190
191

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

192
    VERSION: Optional[Union[int, str]] = None
193

194
195
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
196
    DATASET_PATH: Optional[str] = None
197
198

    # The name of a subset within `DATASET_PATH`.
199
    DATASET_NAME: Optional[str] = None
200

201
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
202

203
204
    def __init__(
        self,
205
206
207
208
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
209
    ) -> None:
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
232
233
234
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
235

236
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
237

lintangsutawika's avatar
lintangsutawika committed
238
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
239
240
241
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
242

243
244
245
246
247
248
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
273
274
275
276
277
278
279
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
280

281
    @property
282
    def config(self) -> TaskConfig:
283
284
285
        """Returns the TaskConfig associated with this class."""
        return self._config

286
287
288
289
290
291
292
293
294
295
296
297
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""

298
    def training_docs(self) -> Iterable:
299
300
301
302
303
304
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

305
    def validation_docs(self) -> Iterable:
306
307
308
309
310
311
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

312
    def test_docs(self) -> Iterable:
313
314
315
316
317
318
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

319
    def fewshot_docs(self) -> Iterable:
320
321
322
323
324
325
326
327
328
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
329
330
331
332
333
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
334
335
            return self.test_docs()

336
    def _process_doc(self, doc: dict) -> dict:
337
338
339
340
341
342
343
344
345
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
346

347
    @property
348
    def instances(self) -> List[Instance]:
349
350
351
352
353
354
355
356
357
358
359
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

360
361
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
362
363
364
365
366
367
368
369
370
371
372
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

373
374
375
376
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

377
378
379
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
380
381
382
    def doc_to_prefix(self, doc):
        return ""

383
384
    def build_all_requests(
        self,
385
        *,
386
        limit: Union[int, None] = None,
387
        samples: Optional[List[int]] = None,
388
389
390
391
392
393
394
395
396
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
397
    ) -> None:
398
        """Build a set of Instances for a task, and store them in task.instances"""
399
400
401
402

        # used with caching
        og_limit = limit

403
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
404
405
406
407
408
409
410
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
411
        cache_key += f"-tokenizer{tokenizer_name}"
412

Baber Abbasi's avatar
Baber Abbasi committed
413
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
414
415
416
417
418
419
420
421
422
423
424
425
426

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
427
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
428

429
        instances = []
430
431
432
433
434
435
436
437
438
439

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
440
441
442
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
443
444
445
446
447
448
449
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
450
        ):
451
            # sample fewshot context #TODO: need to offset doc_id by rank now!
452
            fewshot_ctx = self.fewshot_context(
453
                doc,
454
455
456
457
458
459
460
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
461
                gen_prefix=self.doc_to_prefix(doc),
462
            )
463

464
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
465
466
467
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
468
                metadata=(self.config["task"], doc_id, self.config.repeats),
469
                apply_chat_template=apply_chat_template,
470
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
471
            )
472
473
474
475

            if not isinstance(inst, list):
                inst = [inst]

476
477
478
479
480
481
482
483
484
485
486
487
488
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
489

490
491
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
492

493
494
495
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
512
            The number of times each instance in a dataset is inferred on. Defaults to 1,
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
            can be increased for techniques like majority voting.
        """

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """

544
545
546
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
547
548
549
550
551
552
553
554
555
556
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

557
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
558
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
559
560
561
562
563
564
565
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
566
567
568
569
570
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
571
572
573
        :returns: str
            The fewshot context.
        """
574
        if rnd is None:
575
576
577
578
579
580
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
581

582
        description = description if description else ""
583
584

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
585
            labeled_examples = ""
586
        else:
lintangsutawika's avatar
lintangsutawika committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
611
            )
612
613

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
614
        return description + labeled_examples + example
615

616
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
617
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
618
619
        if hasattr(self, "_filters"):
            for f in self._filters:
620
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
621
622
623
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
624

baberabb's avatar
baberabb committed
625
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
626
        """Returns the config as a dictionary."""
627
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
628
        # (num_fewshot)
629
        return self.config.to_dict()
630

Baber Abbasi's avatar
Baber Abbasi committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
Baber's avatar
Baber committed
668
669
        self._config.metric_list = [{"metric": metric_name}]
        self._config.process_results = None
Baber Abbasi's avatar
Baber Abbasi committed
670

671
672
673
674
675
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

676
677
678
679
680
681
682
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
683
684
685
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
686
687

    def doc_iterator(
688
689
690
691
692
693
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
694
    ) -> Iterator[Tuple[int, Any]]:
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
717
718
        return doc_iterator

719
720

class ConfigurableTask(Task):
721
    VERSION = "Yaml"
722
    OUTPUT_TYPE = None
723
    CONFIG = None
724
725

    def __init__(
726
727
728
729
730
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
731
    ) -> None:  # TODO no super() call here
732
        # Get pre-configured attributes
733
        self._config = self.CONFIG
734

735
        # Use new configurations if there was no preconfiguration
736
        if self.config is None:
737
            self._config = TaskConfig(**config)
738
739
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
740
            if config is not None:
741
                self._config.__dict__.update(config)
742

743
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
744
745
746
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
747

748
749
750
751
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

752
        if self.config.output_type is not None:
753
754
755
756
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
757
            self.OUTPUT_TYPE = self.config.output_type
758

759
760
761
762
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

763
764
765
766
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
767
768
769
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

770
771
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
772

773
774
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
775

776
777
778
779
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
780

781
        if self.config.metric_list is None:
782
            # TODO: handle this in TaskConfig.__post_init__ ?
783
784
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

785
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
786
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
787
                self._metric_fn_kwargs[metric_name] = {}
788
789
790
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
791
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
792
        else:
793
            for metric_config in self.config.metric_list:
794
795
796
797
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
798
799
800
801
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
802
803
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
804
                }
Chris's avatar
Chris committed
805
806
807
808
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
809

810
                if self.config.process_results is not None:
811
812
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
813
814
815
816
817
818
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
819
820
821
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
822
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
823

824
                if "aggregation" in metric_config:
825
                    agg_name = metric_config["aggregation"]
826
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
827
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
Baber's avatar
Baber committed
828
                    elif callable(agg_name):
829
830
831
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
832
                else:
833
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
834
                    metric_agg = get_metric_aggregation(metric_name)
835
                    eval_logger.warning(
836
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
837
838
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
839
                    )
840
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
841

842
843
844
845
846
847
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
848
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
849
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
850
                        f"higher_is_better={is_higher_better(metric_name)}"
851
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
852
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
853

854
        self.download(self.config.dataset_kwargs)
855
856
857
        self._training_docs = None
        self._fewshot_docs = None

858
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
859
            self._filters = []
860
            for filter_config in self.config.filter_list:
861
862
863
864
865
866
867
868
869
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
870
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
871
        else:
Baber Abbasi's avatar
Baber Abbasi committed
872
873
874
875
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
876
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
877

878
879
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
880
            self.prompt = get_prompt(
881
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
882
            )
883
884
885
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
886
        if self.fewshot_docs() is not None:
887
888
889
890
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
891
892
893
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
910

911
        self.task_docs = self.eval_docs
912

913
        # Test One Doc
914
        self.features = list(self.task_docs.features.keys())
915
916
        self.multiple_input = 0
        self.multiple_target = 0
917
        test_doc = self.task_docs[0]
918
        test_text = self.doc_to_text(test_doc)
919
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
920

921
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
922
            test_choice = self.doc_to_choice(test_doc)
923
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
924
                eval_logger.error("doc_to_choice must return list")
925
926
            else:
                num_choice = len(test_choice)
927

928
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
929
930
931
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
932
                self.multiple_input = num_choice
933
934
        else:
            test_choice = None
935

936
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
937
938
939
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
940
            self.multiple_target = len(test_target)
941
        else:
942
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
943
                test_target = test_choice[test_target]
944
            else:
lintangsutawika's avatar
lintangsutawika committed
945
                test_target = str(test_target)
946

947
948
949
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
950
            check_choices = [test_target]
951
952
953
954
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
955
956
                    True
                    if self.config.target_delimiter.rstrip()
957
                    != self.config.target_delimiter
958
                    else False
959
                )
960

961
                if delimiter_has_whitespace and choice_has_whitespace:
962
963
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
964
965
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
966
                    eval_logger.debug(
967
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
968
969
                    )

Baber Abbasi's avatar
Baber Abbasi committed
970
971
972
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
973
974
975
976
        from packaging.version import parse as vparse

        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
Baber Abbasi's avatar
Baber Abbasi committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
991

baberabb's avatar
baberabb committed
992
    def has_training_docs(self) -> bool:
993
        if self.config.training_split is not None:
994
995
996
997
            return True
        else:
            return False

baberabb's avatar
baberabb committed
998
    def has_validation_docs(self) -> bool:
999
        if self.config.validation_split is not None:
1000
1001
1002
1003
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1004
    def has_test_docs(self) -> bool:
1005
        if self.config.test_split is not None:
1006
1007
1008
1009
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1010
    def training_docs(self) -> datasets.Dataset:
1011
        if self.has_training_docs():
1012
1013
1014
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1015
                )
1016
            return self.dataset[self.config.training_split]
1017

baberabb's avatar
baberabb committed
1018
    def validation_docs(self) -> datasets.Dataset:
1019
        if self.has_validation_docs():
1020
1021
1022
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1023
                )
1024
            return self.dataset[self.config.validation_split]
1025

baberabb's avatar
baberabb committed
1026
    def test_docs(self) -> datasets.Dataset:
1027
        if self.has_test_docs():
1028
1029
1030
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1031

1032
    def fewshot_docs(self):
1033
        if self.config.fewshot_split is not None:
1034
1035
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1036
            return self.dataset[self.config.fewshot_split]
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1049
        else:
1050
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1051
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1052
                    f"[Task: {self.config.task}] "
1053
1054
1055
1056
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1057

KonradSzafer's avatar
KonradSzafer committed
1058
1059
1060
1061
1062
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1063
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1064
1065
1066
1067
1068
1069
1070
1071
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1072
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1073
1074
            # if last message is user, append to it to avoid two user messages in a row
            else:
1075
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1076
1077
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1078
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1079
1080
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1081

lintangsutawika's avatar
lintangsutawika committed
1082
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1083
1084
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1085
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1086
1087
1088
1089
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1090
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1091
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1092
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1093
1094
1095
1096
1097
1098
1099
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1100
1101
1102
1103
1104
1105
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1106
1107
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1108
1109
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1110
1111
1112
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1113
1114
1115
1116
1117
1118
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1119
        if description := self.config.description:
Baber's avatar
Baber committed
1120
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1121

KonradSzafer's avatar
KonradSzafer committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1131
        else:
KonradSzafer's avatar
KonradSzafer committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1145
1146
1147
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1148
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1149
1150
1151
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1152
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1153
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1154
                )
lintangsutawika's avatar
lintangsutawika committed
1155
1156

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1157
1158
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1159
                # TODO: append prefill?
1160
1161
                if not labeled_examples:
                    return ""
1162
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1163
1164
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1165
1166
1167
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1168
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1169
1170
1171
1172
1173
1174
1175
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1176
1177
1178
1179
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1180
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1181
1182
1183
1184
1185
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1186
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1187
1188
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1189
1190
1191
1192
1193
1194
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1195
1196
1197
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1198
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1199
1200
1201
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1202
1203
1204
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1205
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1206
1207
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1208
1209
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1210
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1211
            )
1212
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1213
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1214
1215
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1216
1217
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1218
1219
            if self.multiple_input:
                return labeled_examples
1220
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1221
                return labeled_examples + example + prefix
1222
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1223
                return [labeled_examples + ex + prefix for ex in example]
1224
1225
1226
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1227
                    return labeled_examples + choices[example] + prefix
1228
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1229
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1230

Baber Abbasi's avatar
Baber Abbasi committed
1231
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1232
        """Iterates over FilterEnsembles and applies them to instances"""
1233
1234
        if hasattr(self, "_filters"):
            for f in self._filters:
1235
                f.apply(self._instances)
1236
1237
1238
1239
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1240
    def should_decontaminate(self):
1241
        return self.config.should_decontaminate
1242

Baber Abbasi's avatar
Baber Abbasi committed
1243
    def doc_to_decontamination_query(self, doc: dict):
1244
        if self.config.should_decontaminate:
1245
1246
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1247
            else:
1248
1249
1250
1251
1252
1253
1254
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
Baber's avatar
Baber committed
1255
                        utils.apply_template(
1256
1257
1258
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1259

1260
    def _process_doc(self, doc: dict) -> dict:
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1271
    def doc_to_text(self, doc, doc_to_text=None):
1272
1273
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1274
1275
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1276
        else:
1277
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1278

1279
        if isinstance(doc_to_text, int):
1280
            return doc_to_text
1281
        elif isinstance(doc_to_text, str):
1282
            if doc_to_text in self.features:
1283
                # if self.config.doc_to_choice is not None:
1284
1285
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1286
1287
                return doc[doc_to_text]
            else:
Baber's avatar
Baber committed
1288
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1289
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1290
1291
1292
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1293
        elif callable(doc_to_text):
1294
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1295
        # Used when applying a Promptsource template
1296
        elif hasattr(doc_to_text, "apply"):
1297
1298
1299
1300
1301
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1302
                return self.config.fewshot_delimiter
1303
        else:
1304
            print(type(doc_to_text))
1305
            raise TypeError
1306

Yu Shi Jie's avatar
Yu Shi Jie committed
1307
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1308
1309
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1310
1311
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1312
        else:
1313
            doc_to_target = self.config.doc_to_target
1314

1315
        if isinstance(doc_to_target, int):
1316
            return doc_to_target
1317
        elif isinstance(doc_to_target, str):
1318
            if doc_to_target in self.features:
1319
                # if self.config.doc_to_choice is not None:
1320
1321
1322
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1323
            else:
Baber's avatar
Baber committed
1324
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1325
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1326
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1327
1328
1329
1330
1331
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1332
1333
1334
1335
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1336
1337
                else:
                    return target_string
1338
        elif isinstance(doc_to_target, list):
1339
            return doc_to_target
1340
        elif callable(doc_to_target):
1341
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1342
        # Used when applying a Promptsource template
1343
        elif hasattr(doc_to_target, "apply"):
1344
            applied_prompt = doc_to_target.apply(doc)
1345
1346
1347
1348
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1349
                return self.config.fewshot_delimiter
1350
1351
        else:
            raise TypeError
1352

Yu Shi Jie's avatar
Yu Shi Jie committed
1353
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1354
1355
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1356
1357
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1358
        elif self.config.doc_to_choice is None:
1359
1360
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1361
            doc_to_choice = self.config.doc_to_choice
1362

1363
        if isinstance(doc_to_choice, str):
1364
1365
1366
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
Baber's avatar
Baber committed
1367
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1368
        elif isinstance(doc_to_choice, list):
1369
            return doc_to_choice
1370
        elif isinstance(doc_to_choice, dict):
1371
1372
1373
1374
1375
1376
1377
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1378

1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
Baber's avatar
Baber committed
1396
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
1397
1398
1399
1400
1401
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
Baber's avatar
Baber committed
1419
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
1420
1421
1422
1423
1424
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1425
1426
1427
1428
1429
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
Baber's avatar
Baber committed
1430
                return utils.apply_template(gen_prefix, doc)
Baber Abbasi's avatar
Baber Abbasi committed
1431
1432
        return None

baberabb's avatar
baberabb committed
1433
1434
1435
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1436
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1437
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1438

1439
1440
        aux_arguments = None

1441
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1442
            arguments = (ctx, self.doc_to_target(doc))
1443
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1444
            arguments = (self.doc_to_target(doc),)
1445
        elif self.OUTPUT_TYPE == "multiple_choice":
1446
            choices = self.doc_to_choice(doc)
1447
            target_delimiter = self.config.target_delimiter
1448
1449
            if apply_chat_template:
                target_delimiter = ""
1450
1451
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1452
                # apply chat_template to choices if apply_chat_template
1453
                cont = self.doc_to_target(doc)
1454

1455
                arguments = [
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1466
                ]
1467
            else:
1468
                # Otherwise they are placed in the continuation
1469
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1470

1471
1472
1473
1474
1475
1476
1477
1478
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1479
1480
1481
1482
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
Baber's avatar
Baber committed
1495
                "visual": self.doc_to_image(doc),
1496
1497
            }

1498
1499
1500
1501
1502
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
Baber's avatar
Baber committed
1503
                "audio": self.doc_to_audio(doc),
1504
1505
            }

1506
1507
1508
1509
1510
1511
1512
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1513
            request_list = [
1514
1515
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1516
                    doc=doc,
1517
                    arguments=arg,
1518
                    idx=i,
1519
1520
                    **kwargs,
                )
1521
                for i, arg in enumerate(arguments)
1522
            ]
1523
1524

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1525

lintangsutawika's avatar
lintangsutawika committed
1526
        return Instance(
1527
1528
1529
1530
1531
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1532
        )
1533
1534

    def process_results(self, doc, results):
1535
1536
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1537

1538
        result_dict = {}
1539
        use_metric = list(self._metric_fn_list.keys())
1540
1541
1542
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1543
1544
1545
1546
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1547
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1548
            (loglikelihood,) = results
1549
1550
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1551
            return {
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1567
            }
1568
        elif self.OUTPUT_TYPE == "multiple_choice":
1569
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1570

1571
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1572
            choices = self.doc_to_choice(doc)
1573
1574
            completion_len = np.array([float(len(i)) for i in choices])

1575
1576
            if (
                2 * len(choices) == len(lls)
1577
                and "acc_mutual_info" in self._metric_fn_list.keys()
1578
1579
1580
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1581
1582
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1583
1584
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1585
                # and this stores our "regular" conditional loglikelihoods
1586
                lls = lls[: len(choices)]
1587

1588
1589
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1590

1591
1592
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1593
            else:
1594
                gold = self.doc_to_target(doc)
1595
1596

            gold_index_error = False
1597
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1598
1599
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1600
1601
                    gold_index_error = True
            else:
1602
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1603
                    gold = gold if gold < len(choices) else -100
1604
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1605
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1606

Lintang Sutawika's avatar
Lintang Sutawika committed
1607
                if gold == -100:
1608
1609
1610
1611
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1612
                    f"Label index was not in within range of available choices,"
1613
1614
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1615

1616
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1617
1618
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1619
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1620
1621
1622
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1623
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1624
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1625

Lintang Sutawika's avatar
Lintang Sutawika committed
1626
1627
1628
1629
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1630
            result_dict = {
1631
                **({"acc": acc} if "acc" in use_metric else {}),
1632
1633
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1634
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1635
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1636
1637
1638
1639
1640
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1641
1642
            }

1643
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1644
1645
1646
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1647
1648
1649
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1650
        elif self.OUTPUT_TYPE == "generate_until":
1651
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1652
            result = results[0]
1653
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1654
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1655
                # it assumes that doc_to_target returns a number.
1656
1657
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1658
1659
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1660
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1661
1662
1663
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1664
            ):
Chris's avatar
Chris committed
1665
1666
                # cast gold to the same type as result
                gold = type(result)(gold)
1667

lintangsutawika's avatar
lintangsutawika committed
1668
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1669
1670
1671
1672
1673
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1674
1675
1676
1677
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1678
1679
1680
1681
1682
1683
1684
1685
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1686
                    else:
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1708
                else:
1709
                    try:
1710
                        result_score = self._metric_fn_list[metric](
1711
1712
                            references=[gold],
                            predictions=[result],
1713
                            **self._metric_fn_kwargs[metric],
1714
                        )
1715
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1716
                        result_score = self._metric_fn_list[metric]([gold, result])
1717
1718
1719
1720
1721
1722
1723
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1724
        else:
lintangsutawika's avatar
lintangsutawika committed
1725
1726
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1727
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1728
            )
1729
1730
1731

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1732
    def aggregation(self) -> dict:
1733
1734
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1735
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1736
        return self._higher_is_better
1737

Baber Abbasi's avatar
Baber Abbasi committed
1738
1739
1740
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1741
1742
1743
1744
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1745
1746
1747
1748
1749
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1750
            f"num_samples={len(self.eval_docs)})"
1751
1752
        )

1753
1754

class MultipleChoiceTask(Task):
1755
    OUTPUT_TYPE = "loglikelihood"
1756

baberabb's avatar
baberabb committed
1757
    def doc_to_target(self, doc: dict) -> str:
1758
1759
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1760
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1761
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1762
1763
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1764
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1765
                doc=doc,
Baber's avatar
Baber committed
1766
                arguments=(ctx, f" {choice}"),
1767
                idx=i,
1768
1769
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1770
1771
            for i, choice in enumerate(doc["choices"])
        ]
1772

1773
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1774
1775
1776
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1788
    def higher_is_better(self) -> dict:
1789
1790
1791
1792
1793
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1794
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1795
1796
        from lm_eval.api.metrics import mean

1797
1798
1799
1800
1801
1802
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1803
class PerplexityTask(Task):
1804
1805
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1806
    def has_training_docs(self) -> bool:
1807
1808
        return False

baberabb's avatar
baberabb committed
1809
    def fewshot_examples(self, k: int, rnd) -> List:
1810
1811
1812
1813
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1814
1815
        return []

baberabb's avatar
baberabb committed
1816
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1817
1818
1819
1820
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1821
1822
1823

        return ""

baberabb's avatar
baberabb committed
1824
    def higher_is_better(self) -> dict:
1825
1826
1827
1828
1829
1830
1831
1832
1833
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1834
    def doc_to_text(self, doc) -> str:
1835
1836
1837
1838
1839
        return ""

    def doc_to_target(self, doc):
        return doc

1840
1841
1842
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1843

lintangsutawika's avatar
lintangsutawika committed
1844
1845
1846
1847
1848
1849
1850
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1851

1852
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1853
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1854
1855
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1856
1857
1858
1859
1860
1861
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1862
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1863
1864
        from lm_eval.api.metrics import bits_per_byte, weighted_perplexity

1865
1866
1867
1868
1869
1870
1871
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1872
    def count_bytes(cls, doc) -> int:
1873
1874
1875
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1876
    def count_words(cls, doc) -> int:
1877
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1878
        return len(re.split(r"\s+", doc))