task.py 75 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
Baber's avatar
Baber committed
9
from functools import cached_property
10
from inspect import getsource
11
12
13
14
15
16
17
18
19
20
21
22
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
23
24
25

import datasets
import numpy as np
26
from tqdm import tqdm
Baber's avatar
Baber committed
27
from typing_extensions import deprecated
28
29

from lm_eval import utils
30
from lm_eval.api import samplers
31
32
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
33
from lm_eval.api.registry import (
34
35
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
36
    get_aggregation,
37
    get_metric,
38
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
39
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
40
)
41
from lm_eval.caching.cache import load_from_cache, save_to_cache
42
43
44
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

45

46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
50
    "generate_until",
51
52
]

Lintang Sutawika's avatar
Lintang Sutawika committed
53
eval_logger = logging.getLogger(__name__)
54

lintangsutawika's avatar
lintangsutawika committed
55

Baber's avatar
Baber committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
@dataclass
class MetricConfig:
    """Encapsulates information about a single metric."""

    name: str
    fn: Optional[Callable] = None
    kwargs: Optional[dict] = None
    aggregation_fn: Optional[Callable] = None
    higher_is_better: bool = True
    hf_evaluate: bool = False

    @cached_property
    def metric_names(self) -> str:
        return self.name

    @cached_property
    def aggregation(self) -> Callable:
        if self.aggregation_fn is None:
            return get_aggregation(self.name)
        return self.aggregation_fn

    @cached_property
    def _higher_is_better(self) -> bool:
        if self.higher_is_better is None:
            return is_higher_better(self.name)
        return self.higher_is_better


@dataclass
class FilterConfig:
    """Encapsulates information about a single filter."""

    name: str
    fn: Optional[Callable] = None
    kwargs: Optional[dict] = None


Baber's avatar
Baber committed
93
94
95
96
97
98
@dataclass
class FewshotConfig:
    sampler: str
    samples: list[dict]


99
100
@dataclass
class TaskConfig(dict):
101
    # task naming/registry
102
103
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
104
    tag: Optional[Union[str, list]] = None
105
106
107
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
108
    custom_dataset: Optional[Callable] = None
109
110
111
112
113
114
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
115
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
116
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
117
    )
118
119
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
120
121
122
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
123
    doc_to_image: Union[Callable, str] = None
124
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
125
    unsafe_code: bool = False
126
127
128
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
129
    description: str = ""
130
131
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
132
    fewshot_config: Optional[dict] = None
133
    # runtime configuration options
134
    num_fewshot: Optional[int] = None
135
    # scoring options
136
137
138
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
139
    repeats: int = 1
140
    filter_list: Optional[Union[str, list]] = None
141
    should_decontaminate: bool = False
142
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
143
    gen_prefix: Optional[str] = None
144
145
146
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
Baber's avatar
Baber committed
147
148
    _metric_list = None
    _filter_list = None
149

Ethan Smith's avatar
Ethan Smith committed
150
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
151
        if self.generation_kwargs is not None:
152
            if self.output_type != "generate_until":
153
                eval_logger.warning(
154
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
155
156
157
158
159
160
161
162
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
163
164
165
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
166
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
167
        else:
168
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
169
170
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
171
172
173
174
175
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
176
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
177
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
178
                }
Baber Abbasi's avatar
Baber Abbasi committed
179
180
181
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
182

Baber's avatar
Baber committed
183
184
185
186
187
188
189
190
191
192
193
        if self.metric_list is not None:
            for metric_config in self.metric_list:
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )

    def get_metrics(self) -> list["MetricConfig"]:
        metrics = []
        if self.metric_list is None:
            _metric_list = DEFAULT_METRIC_REGISTRY[self.output_type]
Baber's avatar
Baber committed
194
195
196
            eval_logger.info(
                f"No metrics defined in config, using default metrics for {self.output_type}={_metric_list}"
            )
Baber's avatar
Baber committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            metrics.extend(
                MetricConfig(
                    name=metric_name,
                    fn=get_metric(metric_name),
                    aggregation_fn=get_metric_aggregation(metric_name),
                    higher_is_better=is_higher_better(metric_name),
                )
                for metric_name in _metric_list
            )
        else:
            for metric_config in self.metric_list:
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
                metric_name = metric_config["metric"]
                _metric_fn_kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
                }
                _hf_evaluate_metric: bool = metric_config.get("hf_evaluate", False)
                _metric_fn = None
                _aggregation = None

                if self.process_results is not None:
                    # User will compute metrics inside `process_results()`
                    _metric_name = None
                    _metric_fn_kwargs = {}
                elif callable(metric_name):
                    # User passed a function object
                    _metric_name = metric_name.__name__
                    _metric_fn = metric_name.__call__
                else:
                    # Normal: look up by name
                    _metric_name = get_metric(metric_name, _hf_evaluate_metric)

                # ---------- 3. Decide how to aggregate examples ----------
                if "aggregation" in metric_config:
                    if isinstance(_agg_name := metric_config["aggregation"], str):
                        _aggregation = get_aggregation(_agg_name)
                    elif callable(_agg_name):  # noqa: E721
                        _aggregation = metric_config["aggregation"]
                else:
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    _aggregation = get_metric_aggregation(metric_name)
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[_aggregation]}"
                    )

                # ---------- 4. Determine “higher-is-better” semantics ----------
                if "higher_is_better" in metric_config:
                    _higher_is_better = metric_config["higher_is_better"]
                else:
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={is_higher_better(metric_name)}"
                    )
                    _higher_is_better = is_higher_better(metric_name)

                metrics.append(
                    MetricConfig(
                        name=_metric_name,
                        fn=_metric_fn,
                        kwargs=_metric_fn_kwargs,
                        aggregation_fn=_aggregation,
                        higher_is_better=_higher_is_better,
                        hf_evaluate=_hf_evaluate_metric,
                    )
                )
        return metrics

Baber's avatar
Baber committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def get_filters(self):
        if self.filter_list is not None:
            _filter_list = []
            if isinstance(self.filter_list, dict):
                for filter_config in self.filter_list:
                    _filter_list.append(
                        build_filter_ensemble(
                            filter_name=filter_config["name"],
                            components=[
                                [
                                    {
                                        key: function[key]
                                        for key in function
                                        if key != "function"
                                    }
                                ]
                                for function in filter_config["filter"]
                            ],
                        )
                    )
        else:
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
            _filter_list = [build_filter_ensemble("none", [["take_first", None]])]

        return _filter_list

302
303
304
    def __getitem__(self, item):
        return getattr(self, item)

305
306
307
    def __setitem__(self, item, value):
        return setattr(self, item, value)

308
    def to_dict(self, keep_callable: bool = False) -> dict:
309
310
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
311
        Used for dumping results alongside full task configuration
312

haileyschoelkopf's avatar
haileyschoelkopf committed
313
314
315
316
317
318
319
320
321
322
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
323
324
325
326
327
328
329
330
331
332
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
333
        return cfg_dict
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

351
352
353
354
355
356
357
358
359
360
361

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

362
    VERSION: Optional[Union[int, str]] = None
363

364
365
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
366
    DATASET_PATH: Optional[str] = None
367
368

    # The name of a subset within `DATASET_PATH`.
369
    DATASET_NAME: Optional[str] = None
370

371
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
372

373
374
    def __init__(
        self,
375
376
377
378
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
379
    ) -> None:
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
402
403
404
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
405

406
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
407

lintangsutawika's avatar
lintangsutawika committed
408
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
409
410
411
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
412

413
414
415
416
417
418
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
443
444
445
446
447
448
449
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
450

451
    @property
452
    def config(self) -> TaskConfig:
453
454
455
        """Returns the TaskConfig associated with this class."""
        return self._config

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

471
    def training_docs(self) -> Iterable:
472
473
474
475
476
477
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

478
    def validation_docs(self) -> Iterable:
479
480
481
482
483
484
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

485
    def test_docs(self) -> Iterable:
486
487
488
489
490
491
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

492
    def fewshot_docs(self) -> Iterable:
493
494
495
496
497
498
499
500
501
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
502
503
504
505
506
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
507
508
            return self.test_docs()

509
    def _process_doc(self, doc: dict) -> dict:
510
511
512
513
514
515
516
517
518
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
519

520
    @property
521
    def instances(self) -> List[Instance]:
522
523
524
525
526
527
528
529
530
531
532
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

533
534
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
535
536
537
538
539
540
541
542
543
544
545
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

546
547
548
549
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

550
551
552
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
553
554
555
    def doc_to_prefix(self, doc):
        return ""

556
557
    def build_all_requests(
        self,
558
        *,
559
        limit: Union[int, None] = None,
560
        samples: Optional[List[int]] = None,
561
562
563
564
565
566
567
568
569
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
570
    ) -> None:
571
        """Build a set of Instances for a task, and store them in task.instances"""
572
573
574
575

        # used with caching
        og_limit = limit

576
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
577
578
579
580
581
582
583
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
584
        cache_key += f"-tokenizer{tokenizer_name}"
585

Baber Abbasi's avatar
Baber Abbasi committed
586
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
587
588
589
590
591
592
593
594
595
596
597
598
599

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
600
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
601

602
        instances = []
603
604
605
606
607
608
609
610
611
612

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
613
614
615
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
616
617
618
619
620
621
622
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
623
        ):
624
            # sample fewshot context #TODO: need to offset doc_id by rank now!
625
            fewshot_ctx = self.fewshot_context(
626
                doc,
627
628
629
630
631
632
633
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
634
                gen_prefix=self.doc_to_prefix(doc),
635
            )
636

637
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
638
639
640
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
641
                metadata=(self.config["task"], doc_id, self.config.repeats),
642
                apply_chat_template=apply_chat_template,
643
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
644
            )
645
646
647
648

            if not isinstance(inst, list):
                inst = [inst]

649
650
651
652
653
654
655
656
657
658
659
660
661
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
662

663
664
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
665

666
667
668
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
685
            The number of times each instance in a dataset is inferred on. Defaults to 1,
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

Baber's avatar
Baber committed
703
    @deprecated("not used anymore")
704
705
706
707
708
709
710
711
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

Baber's avatar
Baber committed
712
    @deprecated("not used anymore")
713
714
715
716
717
718
719
720
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

721
722
723
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
724
725
726
727
728
729
730
731
732
733
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

734
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
735
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
736
737
738
739
740
741
742
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
743
744
745
746
747
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
748
749
750
        :returns: str
            The fewshot context.
        """
751
        if rnd is None:
752
753
754
755
756
757
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
758

759
        description = description if description else ""
760
761

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
762
            labeled_examples = ""
763
        else:
lintangsutawika's avatar
lintangsutawika committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
788
            )
789
790

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
791
        return description + labeled_examples + example
792

793
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
794
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
795
796
        if hasattr(self, "_filters"):
            for f in self._filters:
797
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
798
799
800
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
801

baberabb's avatar
baberabb committed
802
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
803
        """Returns the config as a dictionary."""
804
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
805
        # (num_fewshot)
806
        return self.config.to_dict()
807

Baber Abbasi's avatar
Baber Abbasi committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
830
831
832
833
834
835
836
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
        setattr(self._config, "metric_list", [MetricConfig(name=metric_name)])
        setattr(self._config, "process_results", lambda *args: {"bypass": 0})
Baber Abbasi's avatar
Baber Abbasi committed
837

838
839
840
841
842
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

843
844
845
846
847
848
849
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
850
851
852
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
853
854

    def doc_iterator(
855
856
857
858
859
860
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
861
    ) -> Iterator[Tuple[int, Any]]:
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
884
885
        return doc_iterator

886
887

class ConfigurableTask(Task):
888
    VERSION = "Yaml"
889
    OUTPUT_TYPE = None
890
    CONFIG = None
891
892

    def __init__(
893
894
895
896
897
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Baber's avatar
Baber committed
898
    ) -> None:
899
        # Get pre-configured attributes
900
        self._config = self.CONFIG
901

902
        # Use new configurations if there was no preconfiguration
903
        if self.config is None:
904
            self._config = TaskConfig(**config)
905
906
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
907
            if config is not None:
908
                self._config.__dict__.update(config)
909

910
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
911
912
913
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
914

915
916
917
918
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

919
        if self.config.output_type is not None:
920
921
922
923
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
924
            self.OUTPUT_TYPE = self.config.output_type
925

926
927
928
929
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

930
931
932
933
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
934
935
936
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

937
938
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
939

940
941
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
942

Baber's avatar
Baber committed
943
        self.metric_list: list[MetricConfig] = self._config.get_metrics()
944

945
        self.download(self.config.dataset_kwargs)
946
947
948
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        self._filters = self.config.get_filters()

        # if self.config.filter_list is not None:
        #     self._filters = []
        #     if isinstance(self.config.filter_list, dict):
        #         for filter_config in self.config.filter_list:
        #             self._filters.append(
        #                 build_filter_ensemble(
        #                     filter_config["name"],
        #                     [
        #                         [
        #                             {
        #                                 key: function[key]
        #                                 for key in function
        #                                 if key != "function"
        #                             }
        #                         ]
        #                         for function in filter_config["filter"]
        #                     ],
        #                 )
        #             )
        # else:
        #     # TODO: handle repeats in a more general way rather than just discarding
        #     eval_logger.debug(
        #         "No custom filters defined. Using default 'take_first' filter for handling repeats."
        #     )
        #     self._filters = [build_filter_ensemble("none", [["take_first", None]])]
976

977
978
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
979
            self.prompt = get_prompt(
980
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
981
            )
982
983
984
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
985
        if self.fewshot_docs() is not None:
986
987
988
989
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
990
991
992
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
1009

1010
        self.task_docs = self.eval_docs
1011

1012
        # Test One Doc
1013
        self.features = list(self.task_docs.features.keys())
1014
1015
        self.multiple_input = 0
        self.multiple_target = 0
1016
        test_doc = self.task_docs[0]
1017
        test_text = self.doc_to_text(test_doc)
1018
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
1019

1020
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1021
            test_choice = self.doc_to_choice(test_doc)
1022
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
1023
                eval_logger.error("doc_to_choice must return list")
1024
1025
            else:
                num_choice = len(test_choice)
1026

1027
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
1028
1029
1030
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
1031
                self.multiple_input = num_choice
1032
1033
        else:
            test_choice = None
1034

1035
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
1036
1037
1038
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
1039
            self.multiple_target = len(test_target)
1040
        else:
1041
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1042
                test_target = test_choice[test_target]
1043
            else:
lintangsutawika's avatar
lintangsutawika committed
1044
                test_target = str(test_target)
1045

1046
1047
1048
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1049
            check_choices = [test_target]
1050
1051
1052
1053
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1054
1055
                    True
                    if self.config.target_delimiter.rstrip()
1056
                    != self.config.target_delimiter
1057
                    else False
1058
                )
1059

1060
                if delimiter_has_whitespace and choice_has_whitespace:
1061
1062
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1063
1064
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1065
                    eval_logger.debug(
1066
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1067
1068
                    )

Baber Abbasi's avatar
Baber Abbasi committed
1069
1070
1071
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
1072
1073
1074
1075
        from packaging.version import parse as vparse

        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
Baber Abbasi's avatar
Baber Abbasi committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1090

baberabb's avatar
baberabb committed
1091
    def has_training_docs(self) -> bool:
1092
        if self.config.training_split is not None:
1093
1094
1095
1096
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1097
    def has_validation_docs(self) -> bool:
1098
        if self.config.validation_split is not None:
1099
1100
1101
1102
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1103
    def has_test_docs(self) -> bool:
1104
        if self.config.test_split is not None:
1105
1106
1107
1108
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1109
    def training_docs(self) -> datasets.Dataset:
1110
        if self.has_training_docs():
1111
1112
1113
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1114
                )
1115
            return self.dataset[self.config.training_split]
1116

baberabb's avatar
baberabb committed
1117
    def validation_docs(self) -> datasets.Dataset:
1118
        if self.has_validation_docs():
1119
1120
1121
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1122
                )
1123
            return self.dataset[self.config.validation_split]
1124

baberabb's avatar
baberabb committed
1125
    def test_docs(self) -> datasets.Dataset:
1126
        if self.has_test_docs():
1127
1128
1129
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1130

1131
    def fewshot_docs(self):
1132
        if self.config.fewshot_split is not None:
1133
1134
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1135
            return self.dataset[self.config.fewshot_split]
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1148
        else:
1149
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1150
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1151
                    f"[Task: {self.config.task}] "
1152
1153
1154
1155
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1156

KonradSzafer's avatar
KonradSzafer committed
1157
1158
1159
1160
1161
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1162
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1163
1164
1165
1166
1167
1168
1169
1170
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1171
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1172
1173
            # if last message is user, append to it to avoid two user messages in a row
            else:
1174
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1175
1176
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1177
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1178
1179
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1180

lintangsutawika's avatar
lintangsutawika committed
1181
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1182
1183
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1184
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1185
1186
1187
1188
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1189
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1190
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1191
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1192
1193
1194
1195
1196
1197
1198
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1199
1200
1201
1202
1203
1204
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1205
1206
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1207
1208
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1209
1210
1211
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1212
1213
1214
1215
1216
1217
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1218
1219
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1220

KonradSzafer's avatar
KonradSzafer committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1230
        else:
KonradSzafer's avatar
KonradSzafer committed
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1244
1245
1246
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1247
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1248
1249
1250
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1251
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1252
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1253
                )
lintangsutawika's avatar
lintangsutawika committed
1254
1255

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1256
1257
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1258
                # TODO: append prefill?
1259
1260
                if not labeled_examples:
                    return ""
1261
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1262
1263
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1264
1265
1266
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1267
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1268
1269
1270
1271
1272
1273
1274
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1275
1276
1277
1278
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1279
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1280
1281
1282
1283
1284
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1285
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1286
1287
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1288
1289
1290
1291
1292
1293
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1294
1295
1296
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1297
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1298
1299
1300
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1301
1302
1303
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1304
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1305
1306
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1307
1308
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1309
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1310
            )
1311
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1312
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1313
1314
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1315
1316
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1317
1318
            if self.multiple_input:
                return labeled_examples
1319
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1320
                return labeled_examples + example + prefix
1321
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1322
                return [labeled_examples + ex + prefix for ex in example]
1323
1324
1325
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1326
                    return labeled_examples + choices[example] + prefix
1327
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1328
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1329

Baber Abbasi's avatar
Baber Abbasi committed
1330
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1331
        """Iterates over FilterEnsembles and applies them to instances"""
1332
1333
        if hasattr(self, "_filters"):
            for f in self._filters:
1334
                f.apply(self._instances)
1335
1336
1337
1338
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1339
    def should_decontaminate(self):
1340
        return self.config.should_decontaminate
1341

Baber Abbasi's avatar
Baber Abbasi committed
1342
    def doc_to_decontamination_query(self, doc: dict):
1343
        if self.config.should_decontaminate:
1344
1345
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1346
            else:
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1358

1359
    def _process_doc(self, doc: dict) -> dict:
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1370
    def doc_to_text(self, doc, doc_to_text=None):
1371
1372
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1373
1374
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1375
        else:
1376
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1377

1378
        if isinstance(doc_to_text, int):
1379
            return doc_to_text
1380
        elif isinstance(doc_to_text, str):
1381
            if doc_to_text in self.features:
1382
                # if self.config.doc_to_choice is not None:
1383
1384
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1385
1386
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1387
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
Baber committed
1388
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1389
1390
1391
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1392
        elif callable(doc_to_text):
1393
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1394
        # Used when applying a Promptsource template
1395
        elif hasattr(doc_to_text, "apply"):
1396
1397
1398
1399
1400
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1401
                return self.config.fewshot_delimiter
1402
        else:
1403
            print(type(doc_to_text))
1404
            raise TypeError
1405

Yu Shi Jie's avatar
Yu Shi Jie committed
1406
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1407
1408
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1409
1410
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1411
        else:
1412
            doc_to_target = self.config.doc_to_target
1413

1414
        if isinstance(doc_to_target, int):
1415
            return doc_to_target
1416
        elif isinstance(doc_to_target, str):
1417
            if doc_to_target in self.features:
1418
                # if self.config.doc_to_choice is not None:
1419
1420
1421
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1422
            else:
lintangsutawika's avatar
lintangsutawika committed
1423
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
Baber committed
1424
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1425
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1426
1427
1428
1429
1430
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1431
1432
1433
1434
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1435
1436
                else:
                    return target_string
1437
        elif isinstance(doc_to_target, list):
1438
            return doc_to_target
1439
        elif callable(doc_to_target):
1440
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1441
        # Used when applying a Promptsource template
1442
        elif hasattr(doc_to_target, "apply"):
1443
            applied_prompt = doc_to_target.apply(doc)
1444
1445
1446
1447
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1448
                return self.config.fewshot_delimiter
1449
1450
        else:
            raise TypeError
1451

Yu Shi Jie's avatar
Yu Shi Jie committed
1452
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1453
1454
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1455
1456
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1457
        elif self.config.doc_to_choice is None:
1458
1459
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1460
            doc_to_choice = self.config.doc_to_choice
1461

1462
        if isinstance(doc_to_choice, str):
1463
1464
1465
1466
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1467
        elif isinstance(doc_to_choice, list):
1468
            return doc_to_choice
1469
        elif isinstance(doc_to_choice, dict):
1470
1471
1472
1473
1474
1475
1476
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1477

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1524
1525
1526
1527
1528
1529
1530
1531
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1532
1533
1534
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1535
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1536
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1537

1538
1539
        aux_arguments = None

1540
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1541
            arguments = (ctx, self.doc_to_target(doc))
1542
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1543
            arguments = (self.doc_to_target(doc),)
1544
        elif self.OUTPUT_TYPE == "multiple_choice":
1545
            choices = self.doc_to_choice(doc)
1546
            target_delimiter = self.config.target_delimiter
1547
1548
            if apply_chat_template:
                target_delimiter = ""
1549
1550
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1551
                # apply chat_template to choices if apply_chat_template
1552
                cont = self.doc_to_target(doc)
1553

1554
                arguments = [
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1565
                ]
1566
            else:
1567
                # Otherwise they are placed in the continuation
1568
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1569

1570
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1571
            if "acc_mutual_info" in [m.metric_names for m in self.metric_list]:
1572
1573
1574
1575
1576
1577
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1578
1579
1580
1581
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1597
1598
1599
1600
1601
1602
1603
1604
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1605
1606
1607
1608
1609
1610
1611
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1612
            request_list = [
1613
1614
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1615
                    doc=doc,
1616
                    arguments=arg,
1617
                    idx=i,
1618
1619
                    **kwargs,
                )
1620
                for i, arg in enumerate(arguments)
1621
            ]
1622
1623

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1624

lintangsutawika's avatar
lintangsutawika committed
1625
        return Instance(
1626
1627
1628
1629
1630
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1631
        )
1632
1633

    def process_results(self, doc, results):
1634
1635
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1636

1637
        result_dict = {}
Baber's avatar
Baber committed
1638
        use_metric = list(m.metric_names for m in self.metric_list)
1639
1640
1641
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1642
1643
1644
1645
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1646
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1647
            (loglikelihood,) = results
1648
1649
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1650
            return {
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1666
            }
1667
        elif self.OUTPUT_TYPE == "multiple_choice":
1668
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1669

1670
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1671
            choices = self.doc_to_choice(doc)
1672
1673
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1674
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1675
1676
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1677
1678
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1679
1680
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1681
                # and this stores our "regular" conditional loglikelihoods
1682
                lls = lls[: len(choices)]
1683

1684
1685
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1686

1687
1688
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1689
            else:
1690
                gold = self.doc_to_target(doc)
1691
1692

            gold_index_error = False
1693
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1694
1695
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1696
1697
                    gold_index_error = True
            else:
1698
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1699
                    gold = gold if gold < len(choices) else -100
1700
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1701
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1702

Lintang Sutawika's avatar
Lintang Sutawika committed
1703
                if gold == -100:
1704
1705
1706
1707
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1708
                    f"Label index was not in within range of available choices,"
1709
1710
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1711

1712
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1713
1714
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1715
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1716
1717
1718
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1719
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1720
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1721

Lintang Sutawika's avatar
Lintang Sutawika committed
1722
1723
1724
1725
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1726
            result_dict = {
1727
                **({"acc": acc} if "acc" in use_metric else {}),
1728
1729
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1730
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1731
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1732
1733
1734
1735
1736
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1737
1738
            }

1739
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1740
1741
1742
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1743
1744
1745
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1746
        elif self.OUTPUT_TYPE == "generate_until":
1747
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1748
            result = results[0]
1749
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1750
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1751
                # it assumes that doc_to_target returns a number.
1752
1753
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1754
1755
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1756
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1757
1758
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
Baber's avatar
Baber committed
1759
                "bypass" in use_metric or isinstance(result, list)
1760
            ):
Chris's avatar
Chris committed
1761
1762
                # cast gold to the same type as result
                gold = type(result)(gold)
1763

Baber's avatar
Baber committed
1764
            for metric in self.metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
1765
1766
1767
1768
1769
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1770
1771
1772
1773
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
Baber's avatar
Baber committed
1774
                    if metric.name == "exact_match":
1775
                        result = [result for _ in range(len(gold))]
Baber's avatar
Baber committed
1776
                        scores = metric.fn(
1777
1778
                            references=gold,
                            predictions=result,
Baber's avatar
Baber committed
1779
                            **metric.kwargs,
1780
1781
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1782
                    else:
1783
1784
                        for gold_option in gold:
                            try:
Baber's avatar
Baber committed
1785
                                result_score = metric.fn(
1786
1787
                                    references=[gold_option],
                                    predictions=[result],
Baber's avatar
Baber committed
1788
                                    **metric.kwargs,
1789
1790
1791
1792
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
Baber's avatar
Baber committed
1793
                                result_score = metric.fn([gold_option, result])
1794
1795
1796
1797
1798
1799
1800
1801
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1802
                else:
1803
                    try:
Baber's avatar
Baber committed
1804
                        result_score = metric.fn(
1805
1806
                            references=[gold],
                            predictions=[result],
Baber's avatar
Baber committed
1807
                            **metric.kwargs,
1808
                        )
1809
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1810
                        result_score = metric.fn([gold, result])
1811
1812
1813
1814
1815
1816
1817
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1818
        else:
lintangsutawika's avatar
lintangsutawika committed
1819
1820
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1821
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1822
            )
1823
1824
1825

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1826
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1827
        return {k.name: k.aggregation_fn for k in self.metric_list}
1828

Baber Abbasi's avatar
Baber Abbasi committed
1829
    def higher_is_better(self) -> dict:
Baber's avatar
Baber committed
1830
        return {k.name: k.higher_is_better for k in self.metric_list}
1831

Baber Abbasi's avatar
Baber Abbasi committed
1832
1833
1834
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1835
1836
1837
1838
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1839
1840
1841
1842
1843
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1844
            f"num_samples={len(self.eval_docs)})"
1845
1846
        )

1847
1848

class MultipleChoiceTask(Task):
1849
    OUTPUT_TYPE = "loglikelihood"
1850

baberabb's avatar
baberabb committed
1851
    def doc_to_target(self, doc: dict) -> str:
1852
1853
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1854
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1855
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1856
1857
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1858
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1859
                doc=doc,
1860
                arguments=(ctx, " {}".format(choice)),
1861
                idx=i,
1862
1863
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1864
1865
            for i, choice in enumerate(doc["choices"])
        ]
1866

1867
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1868
1869
1870
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1882
    def higher_is_better(self) -> dict:
1883
1884
1885
1886
1887
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1888
    def aggregation(self) -> dict:
1889
1890
1891
1892
1893
1894
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1895
class PerplexityTask(Task):
1896
1897
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1898
    def has_training_docs(self) -> bool:
1899
1900
        return False

baberabb's avatar
baberabb committed
1901
    def fewshot_examples(self, k: int, rnd) -> List:
1902
1903
1904
1905
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1906
1907
        return []

baberabb's avatar
baberabb committed
1908
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1909
1910
1911
1912
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1913
1914
1915

        return ""

baberabb's avatar
baberabb committed
1916
    def higher_is_better(self) -> dict:
1917
1918
1919
1920
1921
1922
1923
1924
1925
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1926
    def doc_to_text(self, doc) -> str:
1927
1928
1929
1930
1931
        return ""

    def doc_to_target(self, doc):
        return doc

1932
1933
1934
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1935

lintangsutawika's avatar
lintangsutawika committed
1936
1937
1938
1939
1940
1941
1942
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1943

1944
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1945
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1946
1947
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1948
1949
1950
1951
1952
1953
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1954
    def aggregation(self) -> dict:
1955
1956
1957
1958
1959
1960
1961
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1962
    def count_bytes(cls, doc) -> int:
1963
1964
1965
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1966
    def count_words(cls, doc) -> int:
1967
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1968
        return len(re.split(r"\s+", doc))