task.py 72.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
from lm_eval.api.instance import Instance, OutputType
lintangsutawika's avatar
lintangsutawika committed
30
from lm_eval.api.registry import (
31
32
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
33
    get_aggregation,
34
    get_metric,
35
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
36
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
37
)
38
from lm_eval.caching.cache import load_from_cache, save_to_cache
39
40
41
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

Lintang Sutawika's avatar
Lintang Sutawika committed
50
eval_logger = logging.getLogger(__name__)
51

lintangsutawika's avatar
lintangsutawika committed
52

53
54
@dataclass
class TaskConfig(dict):
55
    # task naming/registry
56
57
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
58
    tag: Optional[Union[str, list]] = None
59
60
61
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
62
    custom_dataset: Optional[Callable] = None
63
64
65
66
67
68
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
69
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
70
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
71
    )
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
75
76
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
77
    doc_to_image: Union[Callable, str] = None
78
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
79
    unsafe_code: bool = False
80
81
82
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
83
    description: str = ""
84
85
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
86
    fewshot_config: Optional[dict] = None
87
    # runtime configuration options
88
    num_fewshot: Optional[int] = None
89
    # scoring options
90
91
92
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
93
    repeats: int = 1
94
    filter_list: Optional[Union[str, list]] = None
95
    should_decontaminate: bool = False
96
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
97
    gen_prefix: Optional[str] = None
98
99
100
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
101

Ethan Smith's avatar
Ethan Smith committed
102
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
103
        if self.generation_kwargs is not None:
104
            if self.output_type != "generate_until":
105
                eval_logger.warning(
106
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113
114
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
115
116
117
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
118
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
119
        else:
120
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
121
122
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
123
124
125
126
127
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
128
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
129
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
130
                }
Baber Abbasi's avatar
Baber Abbasi committed
131
132
133
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
134

135
136
137
    def __getitem__(self, item):
        return getattr(self, item)

138
139
140
    def __setitem__(self, item, value):
        return setattr(self, item, value)

141
    def to_dict(self, keep_callable: bool = False) -> dict:
142
143
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
144
        Used for dumping results alongside full task configuration
145

haileyschoelkopf's avatar
haileyschoelkopf committed
146
147
148
149
150
151
152
153
154
155
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
156
157
158
159
160
161
162
163
164
165
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
166
        return cfg_dict
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

184
185
186
187
188
189
190
191
192
193
194

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

195
    VERSION: Optional[Union[int, str]] = None
196

197
198
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
199
    DATASET_PATH: Optional[str] = None
200
201

    # The name of a subset within `DATASET_PATH`.
202
    DATASET_NAME: Optional[str] = None
203

204
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
205

206
207
    def __init__(
        self,
208
209
210
211
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
212
    ) -> None:
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
235
236
237
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
238

239
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
240

lintangsutawika's avatar
lintangsutawika committed
241
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
242
243
244
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
245

246
247
248
249
250
251
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
276
277
278
279
280
281
282
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
283

284
    @property
285
    def config(self) -> TaskConfig:
286
287
288
        """Returns the TaskConfig associated with this class."""
        return self._config

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

304
    def training_docs(self) -> Iterable:
305
306
307
308
309
310
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

311
    def validation_docs(self) -> Iterable:
312
313
314
315
316
317
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

318
    def test_docs(self) -> Iterable:
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

325
    def fewshot_docs(self) -> Iterable:
326
327
328
329
330
331
332
333
334
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
335
336
337
338
339
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
340
341
            return self.test_docs()

342
    def _process_doc(self, doc: dict) -> dict:
343
344
345
346
347
348
349
350
351
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
352

353
    @property
354
    def instances(self) -> List[Instance]:
355
356
357
358
359
360
361
362
363
364
365
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

366
367
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
368
369
370
371
372
373
374
375
376
377
378
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

379
380
381
382
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

383
384
385
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
386
387
388
    def doc_to_prefix(self, doc):
        return ""

389
390
    def build_all_requests(
        self,
391
        *,
392
        limit: Union[int, None] = None,
393
        samples: Optional[List[int]] = None,
394
395
396
397
398
399
400
401
402
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
403
    ) -> None:
404
        """Build a set of Instances for a task, and store them in task.instances"""
405
406
407
408

        # used with caching
        og_limit = limit

409
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
410
411
412
413
414
415
416
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
417
        cache_key += f"-tokenizer{tokenizer_name}"
418

Baber Abbasi's avatar
Baber Abbasi committed
419
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
420
421
422
423
424
425
426
427
428
429
430
431
432

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
433
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
434

435
        instances = []
436
437
438
439
440
441
442
443
444
445

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
446
447
448
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
449
450
451
452
453
454
455
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
456
        ):
457
            # sample fewshot context #TODO: need to offset doc_id by rank now!
458
            fewshot_ctx = self.fewshot_context(
459
                doc,
460
461
462
463
464
465
466
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
467
                gen_prefix=self.doc_to_prefix(doc),
468
            )
469

470
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
471
472
473
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
474
                metadata=(self.config["task"], doc_id, self.config.repeats),
475
                apply_chat_template=apply_chat_template,
476
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
477
            )
478
479
480
481

            if not isinstance(inst, list):
                inst = [inst]

482
483
484
485
486
487
488
489
490
491
492
493
494
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
495

496
497
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
498

499
500
501
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
518
            The number of times each instance in a dataset is inferred on. Defaults to 1,
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

554
555
556
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
557
558
559
560
561
562
563
564
565
566
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

567
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
568
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
569
570
571
572
573
574
575
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
576
577
578
579
580
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
581
582
583
        :returns: str
            The fewshot context.
        """
584
        if rnd is None:
585
586
587
588
589
590
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
591

592
        description = description if description else ""
593
594

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
595
            labeled_examples = ""
596
        else:
lintangsutawika's avatar
lintangsutawika committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
621
            )
622
623

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
624
        return description + labeled_examples + example
625

626
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
627
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
628
629
        if hasattr(self, "_filters"):
            for f in self._filters:
630
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
631
632
633
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
634

baberabb's avatar
baberabb committed
635
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
636
        """Returns the config as a dictionary."""
637
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
638
        # (num_fewshot)
639
        return self.config.to_dict()
640

Baber Abbasi's avatar
Baber Abbasi committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

681
682
683
684
685
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

686
687
688
689
690
691
692
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
693
694
695
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
696
697

    def doc_iterator(
698
699
700
701
702
703
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
704
    ) -> Iterator[Tuple[int, Any]]:
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
727
728
        return doc_iterator

729
730

class ConfigurableTask(Task):
731
    VERSION = "Yaml"
732
    OUTPUT_TYPE = None
733
    CONFIG = None
734
735

    def __init__(
736
737
738
739
740
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
741
    ) -> None:  # TODO no super() call here
742
        # Get pre-configured attributes
743
        self._config = self.CONFIG
744

745
        # Use new configurations if there was no preconfiguration
746
        if self.config is None:
747
            self._config = TaskConfig(**config)
748
749
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
750
            if config is not None:
751
                self._config.__dict__.update(config)
752

753
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
754
755
756
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
757

758
759
760
761
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

762
        if self.config.output_type is not None:
763
764
765
766
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
767
            self.OUTPUT_TYPE = self.config.output_type
768

769
770
771
772
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

773
774
775
776
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
777
778
779
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

780
781
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
782

783
784
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
785

786
787
788
789
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
790

791
        if self.config.metric_list is None:
792
            # TODO: handle this in TaskConfig.__post_init__ ?
793
794
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

795
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
796
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
797
                self._metric_fn_kwargs[metric_name] = {}
798
799
800
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
801
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
802
        else:
803
            for metric_config in self.config.metric_list:
804
805
806
807
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
808
809
810
811
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
812
813
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
814
                }
Chris's avatar
Chris committed
815
816
817
818
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
819

820
                if self.config.process_results is not None:
821
822
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
823
824
825
826
827
828
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
829
830
831
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
832
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
833

834
                if "aggregation" in metric_config:
835
                    agg_name = metric_config["aggregation"]
836
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
837
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
838
                    elif callable(agg_name):  # noqa: E721
839
840
841
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
842
                else:
843
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
844
                    metric_agg = get_metric_aggregation(metric_name)
845
                    eval_logger.warning(
846
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
847
848
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
849
                    )
850
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
851

852
853
854
855
856
857
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
858
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
859
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
860
                        f"higher_is_better={is_higher_better(metric_name)}"
861
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
862
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
863

864
        self.download(self.config.dataset_kwargs)
865
866
867
        self._training_docs = None
        self._fewshot_docs = None

868
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
869
            self._filters = []
870
            for filter_config in self.config.filter_list:
871
872
873
874
875
876
877
878
879
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
880
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
881
        else:
Baber Abbasi's avatar
Baber Abbasi committed
882
883
884
885
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
886
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
887

888
889
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
890
            self.prompt = get_prompt(
891
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
892
            )
893
894
895
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
896
        if self.fewshot_docs() is not None:
897
898
899
900
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
901
902
903
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
920

921
        self.task_docs = self.eval_docs
922

923
        # Test One Doc
924
        self.features = list(self.task_docs.features.keys())
925
926
        self.multiple_input = 0
        self.multiple_target = 0
927
        test_doc = self.task_docs[0]
928
        test_text = self.doc_to_text(test_doc)
929
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
930

931
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
932
            test_choice = self.doc_to_choice(test_doc)
933
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
934
                eval_logger.error("doc_to_choice must return list")
935
936
            else:
                num_choice = len(test_choice)
937

938
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
939
940
941
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
942
                self.multiple_input = num_choice
943
944
        else:
            test_choice = None
945

946
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
947
948
949
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
950
            self.multiple_target = len(test_target)
951
        else:
952
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
953
                test_target = test_choice[test_target]
954
            else:
lintangsutawika's avatar
lintangsutawika committed
955
                test_target = str(test_target)
956

957
958
959
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
960
            check_choices = [test_target]
961
962
963
964
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
965
966
                    True
                    if self.config.target_delimiter.rstrip()
967
                    != self.config.target_delimiter
968
                    else False
969
                )
970

971
                if delimiter_has_whitespace and choice_has_whitespace:
972
973
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
974
975
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
976
                    eval_logger.debug(
977
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
978
979
                    )

Baber Abbasi's avatar
Baber Abbasi committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
997

baberabb's avatar
baberabb committed
998
    def has_training_docs(self) -> bool:
999
        if self.config.training_split is not None:
1000
1001
1002
1003
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1004
    def has_validation_docs(self) -> bool:
1005
        if self.config.validation_split is not None:
1006
1007
1008
1009
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1010
    def has_test_docs(self) -> bool:
1011
        if self.config.test_split is not None:
1012
1013
1014
1015
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1016
    def training_docs(self) -> datasets.Dataset:
1017
        if self.has_training_docs():
1018
1019
1020
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1021
                )
1022
            return self.dataset[self.config.training_split]
1023

baberabb's avatar
baberabb committed
1024
    def validation_docs(self) -> datasets.Dataset:
1025
        if self.has_validation_docs():
1026
1027
1028
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1029
                )
1030
            return self.dataset[self.config.validation_split]
1031

baberabb's avatar
baberabb committed
1032
    def test_docs(self) -> datasets.Dataset:
1033
        if self.has_test_docs():
1034
1035
1036
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1037

1038
    def fewshot_docs(self):
1039
        if self.config.fewshot_split is not None:
1040
1041
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1042
            return self.dataset[self.config.fewshot_split]
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1055
        else:
1056
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1057
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1058
                    f"[Task: {self.config.task}] "
1059
1060
1061
1062
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1063

KonradSzafer's avatar
KonradSzafer committed
1064
1065
1066
1067
1068
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1069
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1070
1071
1072
1073
1074
1075
1076
1077
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1078
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1079
1080
            # if last message is user, append to it to avoid two user messages in a row
            else:
1081
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1082
1083
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1084
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1085
1086
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1087

lintangsutawika's avatar
lintangsutawika committed
1088
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1089
1090
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1091
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1092
1093
1094
1095
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1096
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1097
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1098
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1099
1100
1101
1102
1103
1104
1105
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1106
1107
1108
1109
1110
1111
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1112
1113
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1114
1115
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1116
1117
1118
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1119
1120
1121
1122
1123
1124
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1125
        if description := self.config.description:
Baber's avatar
Baber committed
1126
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1127

KonradSzafer's avatar
KonradSzafer committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1137
        else:
KonradSzafer's avatar
KonradSzafer committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1151
1152
1153
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1154
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1155
1156
1157
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1158
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1159
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1160
                )
lintangsutawika's avatar
lintangsutawika committed
1161
1162

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1163
1164
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1165
                # TODO: append prefill?
1166
1167
                if not labeled_examples:
                    return ""
1168
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1169
1170
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1171
1172
1173
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1174
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1175
1176
1177
1178
1179
1180
1181
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1182
1183
1184
1185
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1186
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1187
1188
1189
1190
1191
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1192
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1193
1194
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1195
1196
1197
1198
1199
1200
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1201
1202
1203
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1204
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1205
1206
1207
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1208
1209
1210
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1211
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1212
1213
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1214
1215
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1216
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1217
            )
1218
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1219
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1220
1221
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1222
1223
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1224
1225
            if self.multiple_input:
                return labeled_examples
1226
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1227
                return labeled_examples + example + prefix
1228
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1229
                return [labeled_examples + ex + prefix for ex in example]
1230
1231
1232
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1233
                    return labeled_examples + choices[example] + prefix
1234
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1235
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1236

Baber Abbasi's avatar
Baber Abbasi committed
1237
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1238
        """Iterates over FilterEnsembles and applies them to instances"""
1239
1240
        if hasattr(self, "_filters"):
            for f in self._filters:
1241
                f.apply(self._instances)
1242
1243
1244
1245
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1246
    def should_decontaminate(self):
1247
        return self.config.should_decontaminate
1248

Baber Abbasi's avatar
Baber Abbasi committed
1249
    def doc_to_decontamination_query(self, doc: dict):
1250
        if self.config.should_decontaminate:
1251
1252
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1253
            else:
1254
1255
1256
1257
1258
1259
1260
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
Baber's avatar
Baber committed
1261
                        utils.apply_template(
1262
1263
1264
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1265

1266
    def _process_doc(self, doc: dict) -> dict:
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1277
    def doc_to_text(self, doc, doc_to_text=None):
1278
1279
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1280
1281
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1282
        else:
1283
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1284

1285
        if isinstance(doc_to_text, int):
1286
            return doc_to_text
1287
        elif isinstance(doc_to_text, str):
1288
            if doc_to_text in self.features:
1289
                # if self.config.doc_to_choice is not None:
1290
1291
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1292
1293
                return doc[doc_to_text]
            else:
Baber's avatar
Baber committed
1294
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1295
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1296
1297
1298
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1299
        elif callable(doc_to_text):
1300
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1301
        # Used when applying a Promptsource template
1302
        elif hasattr(doc_to_text, "apply"):
1303
1304
1305
1306
1307
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1308
                return self.config.fewshot_delimiter
1309
        else:
1310
            print(type(doc_to_text))
1311
            raise TypeError
1312

Yu Shi Jie's avatar
Yu Shi Jie committed
1313
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1314
1315
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1316
1317
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1318
        else:
1319
            doc_to_target = self.config.doc_to_target
1320

1321
        if isinstance(doc_to_target, int):
1322
            return doc_to_target
1323
        elif isinstance(doc_to_target, str):
1324
            if doc_to_target in self.features:
1325
                # if self.config.doc_to_choice is not None:
1326
1327
1328
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1329
            else:
Baber's avatar
Baber committed
1330
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1331
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1332
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1333
1334
1335
1336
1337
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1338
1339
1340
1341
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1342
1343
                else:
                    return target_string
1344
        elif isinstance(doc_to_target, list):
1345
            return doc_to_target
1346
        elif callable(doc_to_target):
1347
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1348
        # Used when applying a Promptsource template
1349
        elif hasattr(doc_to_target, "apply"):
1350
            applied_prompt = doc_to_target.apply(doc)
1351
1352
1353
1354
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1355
                return self.config.fewshot_delimiter
1356
1357
        else:
            raise TypeError
1358

Yu Shi Jie's avatar
Yu Shi Jie committed
1359
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1360
1361
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1362
1363
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1364
        elif self.config.doc_to_choice is None:
1365
1366
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1367
            doc_to_choice = self.config.doc_to_choice
1368

1369
        if isinstance(doc_to_choice, str):
1370
1371
1372
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
Baber's avatar
Baber committed
1373
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1374
        elif isinstance(doc_to_choice, list):
1375
            return doc_to_choice
1376
        elif isinstance(doc_to_choice, dict):
1377
1378
1379
1380
1381
1382
1383
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1384

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
Baber's avatar
Baber committed
1402
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
1403
1404
1405
1406
1407
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
Baber's avatar
Baber committed
1425
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
1426
1427
1428
1429
1430
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1431
1432
1433
1434
1435
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
Baber's avatar
Baber committed
1436
                return utils.apply_template(gen_prefix, doc)
Baber Abbasi's avatar
Baber Abbasi committed
1437
1438
        return None

baberabb's avatar
baberabb committed
1439
1440
1441
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1442
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1443
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1444

1445
1446
        aux_arguments = None

1447
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1448
            arguments = (ctx, self.doc_to_target(doc))
1449
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1450
            arguments = (self.doc_to_target(doc),)
1451
        elif self.OUTPUT_TYPE == "multiple_choice":
1452
            choices = self.doc_to_choice(doc)
1453
            target_delimiter = self.config.target_delimiter
1454
1455
            if apply_chat_template:
                target_delimiter = ""
1456
1457
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1458
                # apply chat_template to choices if apply_chat_template
1459
                cont = self.doc_to_target(doc)
1460

1461
                arguments = [
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1472
                ]
1473
            else:
1474
                # Otherwise they are placed in the continuation
1475
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1476

1477
1478
1479
1480
1481
1482
1483
1484
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1485
1486
1487
1488
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1504
1505
1506
1507
1508
1509
1510
1511
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1512
1513
1514
1515
1516
1517
1518
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1519
            request_list = [
1520
1521
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1522
                    doc=doc,
1523
                    arguments=arg,
1524
                    idx=i,
1525
1526
                    **kwargs,
                )
1527
                for i, arg in enumerate(arguments)
1528
            ]
1529
1530

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1531

lintangsutawika's avatar
lintangsutawika committed
1532
        return Instance(
1533
1534
1535
1536
1537
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1538
        )
1539
1540

    def process_results(self, doc, results):
1541
1542
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1543

1544
        result_dict = {}
1545
        use_metric = list(self._metric_fn_list.keys())
1546
1547
1548
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1549
1550
1551
1552
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1553
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1554
            (loglikelihood,) = results
1555
1556
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1557
            return {
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1573
            }
1574
        elif self.OUTPUT_TYPE == "multiple_choice":
1575
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1576

1577
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1578
            choices = self.doc_to_choice(doc)
1579
1580
            completion_len = np.array([float(len(i)) for i in choices])

1581
1582
            if (
                2 * len(choices) == len(lls)
1583
                and "acc_mutual_info" in self._metric_fn_list.keys()
1584
1585
1586
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1587
1588
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1589
1590
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1591
                # and this stores our "regular" conditional loglikelihoods
1592
                lls = lls[: len(choices)]
1593

1594
1595
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1596

1597
1598
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1599
            else:
1600
                gold = self.doc_to_target(doc)
1601
1602

            gold_index_error = False
1603
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1604
1605
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1606
1607
                    gold_index_error = True
            else:
1608
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1609
                    gold = gold if gold < len(choices) else -100
1610
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1611
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1612

Lintang Sutawika's avatar
Lintang Sutawika committed
1613
                if gold == -100:
1614
1615
1616
1617
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1618
                    f"Label index was not in within range of available choices,"
1619
1620
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1621

1622
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1623
1624
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1625
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1626
1627
1628
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1629
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1630
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1631

Lintang Sutawika's avatar
Lintang Sutawika committed
1632
1633
1634
1635
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1636
            result_dict = {
1637
                **({"acc": acc} if "acc" in use_metric else {}),
1638
1639
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1640
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1641
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1642
1643
1644
1645
1646
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1647
1648
            }

1649
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1650
1651
1652
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1653
1654
1655
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1656
        elif self.OUTPUT_TYPE == "generate_until":
1657
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1658
            result = results[0]
1659
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1660
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1661
                # it assumes that doc_to_target returns a number.
1662
1663
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1664
1665
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1666
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1667
1668
1669
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1670
            ):
Chris's avatar
Chris committed
1671
1672
                # cast gold to the same type as result
                gold = type(result)(gold)
1673

lintangsutawika's avatar
lintangsutawika committed
1674
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1675
1676
1677
1678
1679
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1680
1681
1682
1683
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1684
1685
1686
1687
1688
1689
1690
1691
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1692
                    else:
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1714
                else:
1715
                    try:
1716
                        result_score = self._metric_fn_list[metric](
1717
1718
                            references=[gold],
                            predictions=[result],
1719
                            **self._metric_fn_kwargs[metric],
1720
                        )
1721
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1722
                        result_score = self._metric_fn_list[metric]([gold, result])
1723
1724
1725
1726
1727
1728
1729
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1730
        else:
lintangsutawika's avatar
lintangsutawika committed
1731
1732
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1733
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1734
            )
1735
1736
1737

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1738
    def aggregation(self) -> dict:
1739
1740
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1741
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1742
        return self._higher_is_better
1743

Baber Abbasi's avatar
Baber Abbasi committed
1744
1745
1746
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1747
1748
1749
1750
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1751
1752
1753
1754
1755
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1756
            f"num_samples={len(self.eval_docs)})"
1757
1758
        )

1759
1760

class MultipleChoiceTask(Task):
1761
    OUTPUT_TYPE = "loglikelihood"
1762

baberabb's avatar
baberabb committed
1763
    def doc_to_target(self, doc: dict) -> str:
1764
1765
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1766
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1767
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1768
1769
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1770
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1771
                doc=doc,
1772
                arguments=(ctx, " {}".format(choice)),
1773
                idx=i,
1774
1775
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1776
1777
            for i, choice in enumerate(doc["choices"])
        ]
1778

1779
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1780
1781
1782
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1794
    def higher_is_better(self) -> dict:
1795
1796
1797
1798
1799
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1800
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1801
1802
        from lm_eval.api.metrics import mean

1803
1804
1805
1806
1807
1808
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1809
class PerplexityTask(Task):
1810
1811
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1812
    def has_training_docs(self) -> bool:
1813
1814
        return False

baberabb's avatar
baberabb committed
1815
    def fewshot_examples(self, k: int, rnd) -> List:
1816
1817
1818
1819
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1820
1821
        return []

baberabb's avatar
baberabb committed
1822
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1823
1824
1825
1826
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1827
1828
1829

        return ""

baberabb's avatar
baberabb committed
1830
    def higher_is_better(self) -> dict:
1831
1832
1833
1834
1835
1836
1837
1838
1839
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1840
    def doc_to_text(self, doc) -> str:
1841
1842
1843
1844
1845
        return ""

    def doc_to_target(self, doc):
        return doc

1846
1847
1848
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1849

lintangsutawika's avatar
lintangsutawika committed
1850
1851
1852
1853
1854
1855
1856
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1857

1858
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1859
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1860
1861
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1862
1863
1864
1865
1866
1867
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1868
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1869
1870
        from lm_eval.api.metrics import bits_per_byte, weighted_perplexity

1871
1872
1873
1874
1875
1876
1877
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1878
    def count_bytes(cls, doc) -> int:
1879
1880
1881
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1882
    def count_words(cls, doc) -> int:
1883
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1884
        return len(re.split(r"\s+", doc))